MN3008 2048-STAGE LOW NOISE BBD

General description

The MN3008 is a 2048-stage long delay low noise BBD that provides a signal delay of up to 102.4msec.

The MN3008 is particularly suitable for use as reverberation effect in electronic musical instruments such as stereo equipment due to its long delay time.

Features

- Variable delay time of audio signal: $10.24 \simeq 102.4$ ms.
- Clock component cancellation capability.
- No insertion loss: Li = 0dB typ.
- Wide dynamic range: S/N = 78dB typ.
- Wide frequency response: $f_i \leq 10$ KHz.
- Low distortion: THD = 0.5% typ. (V_i = 0.78Vrms).
- Clock frequency range: 10 ~ 100KHz.
- P channel silicon gate process.
- Special 8-Lead Dual-In-Line Plastic Package.

Applications

- Reverberation effect of echo microphone and stereo equipments.
- Chorus effects in electronic musical instruments.
- Variable or fixed delay of analog signals.
- Telephone time compression and delay line for voice communication systems, etc.

Block Diagram

Quick Reference Data

ltem	Symbol	Value	Unit
Supply Voltage	V _{DD} , V _{GG}	$-15, V_{DD}+1$	V
Signal Delay Time	t _D	10.24~102.4	ms
Total Harmonic Distortion	THD	0.5	%
Signal to Noise Ratio	S/N	78	dB

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Ratings	Unit
Terminal Voltage	V _{DD} , V _{GG} , V _{CP} , V _I	-18~+0.3	V
Output Voltage	Vo	-18~+0.3	V
Operating Temperature	Topr	-20~+60	Ĵ
Storage Temperature	Tstg	-55~+125	Ĉ

Operating Conditions (Ta = 25°C)

Item	Symbol	Condition	Min.	· Typ.	Max.	Unit
Drain Supply Voltage	V _{DD}		-14	-15	-16	V
Gate Supply Voltage	V _{GG}			$V_{DD} + 1$		V
Clock Voltage "H"Level	V _{CPH}		0		-1	V
Clock Voltage "L" Level	VCPL			V _{DD}		V
Clock Input Capacitance	C _{CP}				1400	pF
Clock Frequency	f _{CP}		10		100	kHz
Clock Pulse Width *1	t _{cpw}				0.5T * 2	
Clock Rise Time *1	t _{cpr}				500	ns
Clock Fall Time *1	t _{cpf}				500	ns
Clock Cross Point *1	Vx		0		- 3	V
Input DC Bias	V _{Bias}		- 5		-10	V

Electrical Characteristics (Ta = 25°C, $V_{DD} = V_{CPL} = -15V$, $V_{CPH} = 0V$, $V_{GG} = -14V$, $R_L = 100k\Omega$)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Signal Delay Time	t _D		10.24		102.4	ms
Input Signal Frequency	fi	f _{cp} = 40kHz, V _i = 1.7Vrms 3dB down (0dB at f _i = 1kHz)	10			kHz
Input Signal Swing	Vi	f_{CP} =40kHz, $f_i = 1$ kHz, THD =2:5%	1.2			Vrms
Insertion Loss	Li	f_{CP} =40kHz, $f_i = 1$ kHz, $V_i = 1.2Vrms$	- 4	0	+ 4	dB
Total Harmonic Distortion	THD	f_{CP} =40kHz, f_i = 1 kHz, V_i =0.78Vrms		0.5	2.5	%
Noise	V _{no}	f _{cp} = 100kHz, weighted by "A" curve			0.4	mVrms
Signal to Noise Ratio	S/N			78		dB

*1 Clock Pulse Waveforms

*2 T = $1/f_{CP}$ (Clock period)

Terminal Assignments

Typical Electrical Characteristic Curves

Supply Voltage Characteristics

MN3008

2048 段アナログ信号遅延用ローノイズ BBD 2048-Stage Low Noise BBD for Analog Signal Delays

■ 概 要 / Description

MN3008 は, 遅延段数 2048 段を有するロングディレイ ローノイ ズ BBD で,最大遅延時間 102.4 ms が得られます。 遅延時間が長いので,ステレオなどの音響装置の残響効果を出す のに最適です。

The MN3008 is a 2048-stage low noise BBD variable delay line in audio frequency range. The device provides a signal delay up to 102.4 ms.

■特徴

- ●オーディオ信号の可変遅延:10.24 ms~102.4 ms
- ●クロック成分の除去が可能
- ●挿入損失がない:L_i=0 dB typ.
- ダイナミックレンジが広い:S/N=78 dB typ.
- 周波数レスポンスが広い:fi≤10 kHz
- ●低歪率:THD=0.5% typ. (V_i=0.78 Vrms)
- クロック周波数範囲: 10 kHz~100 kHz
- P チャンネル・シリコンゲートプロセス
- 8 ピン・プラスチック DIL パッケージ

■用途

- ●エコーマイク、ステレオなど音響装置の残響効果、反響効果
- ●電子楽器の音響効果
- ●アナログ信号の可変または固定式遅延回路

🔳 ブロック図/Block Diagram

Panasonic

MN3008

■ 絶対最大定格/Absolute Maximum Ratings (Ta=25℃)

Item	Symbol	Rating	Unit
	V_{DD} , V_{GG} , V_{CP} , V_{I}	$-18 \sim +0.3$	v
出力電圧	Vo	$-18 \sim +0.3$	v
動作周囲温度	Topr	$-20 \sim +60$	°C
保存温度	Tstg	$-55 \sim +125$	°C

■ 動作条件/Operating Conditions (Ta=25°C)

Item	Symbol	Condition	min.	typ.	max.	Unit
	VDD		-14	-15	-16	v
	VGG			$V_{DD} + 1$		v
クロック電圧ハイレベル	V _{СРН}		0		-1	¥
クロック電圧ローレベル	VCPL			VDD		v
クロック周波数	f _{CP}		10		100	kHz
パルス幅 (Clock Pulse)	tw(CP)		0.4T		0.5T*1	
立上り時間(Clock Pulse)	t _{r(CP)}				500 * ²	ns
立下り時間(Clock Pulse)	t _{f(CP)}				500 * ²	ns
クロック・クロスポイント	Vx		0		-3	v
	Сср				1400	pF
入力バイアス電圧 (DC)	VBias		-5		-10	v

■ 電気的特性/Electrical Characteristics (Ta=25°C, V_{DD}=V_{CPL}=-15V, V_{CPH}=0V, V_{GG}=-14V, R_L=100kΩ)

Item	Symbol	Condition	min.	typ.	max.	Unit
入力周波数	fi	f _{CP} =40kHz, V _i =1.2Vrms 出力減衰値≦3dB (0dB at f _i =1kHz)			10	kHz
入力電圧振幅	υi	$f_{CP} = 40 kHz, f_i = 1 kHz, THD = 2.5\%$			1.2	Vrms
挿入損失	Li	$f_{CP} = 40 kHz, \ f_i = 1 kHz, \ V_i = 1.2 Vrms$	-4	0	4	dB
全高調波歪率	THD	$f_{CP}=40kHz, f_i=1kHz, V_i=0.78Vrms$		0.5	2.5	%
出力雑音電圧	Vno				0.4	mVrms
信号対雑音比	S/N			78		dB

*1 T=1/f_{CP} (クロック周期)

*2 クロックパルス波形

■ 端子接続図/Terminal Connections

Panasonic

— 144 —

■ 回路図/Circuit Diagram

— 145 —

Panasonic

Panasonic

--- 146 ----

■ 応用回路例/Application Circuit

残響効果発生回路(約100 ms以上の信号遅延)/Reverberation Effect Generation Circuit (Signal Delay Over 100ms)

— 147 —

MN3101 CLOCK GENERATOR/DRIVER CMOS LSI FOR BBD

Description

The MN3101 is a CMOS LSI generating two phase clock signal of low output impedance to drive MN3000 series BBD. Built-in V_{GG} power supply circuit for the MN3000 series BBD* provides most suitable V_{GG} voltage for the BBD when the MN3101 is used with the same power source as BBD. Oscillation is abled by external resistors and capacitors, and also oscillation drive is possible by the separate excitation oscillation.

Clock signal frequency is 1/2 of oscillation frequency.

* MN3000 series BBDs MN3001, MN3002, MN3003, MN3004, MN3005, MN3006 MN3007, MN3008, MN3009, MN3010, MN3011, MN3012. Note) Clock signal generator is built-in the MN3003 and MN3012.

Features

- BBD direct driving capability of up to two MN3005s (equivalent to 8192-stages).
- Self and separate oscillations.
- Two phase clock output (Duty: 1/2).
- V_{GG} voltage generator is built-in for the BBD.
- Single power supply: $-8 \simeq -16V$.
- 8-Lead Dual-In-Line Plastic Package.

Applications

• BBD clock generator/driver.

Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit	Remarks
Drain Supply Voltage	V _{DD}	-18~+0.3	V	GND=0V
Input Terminal Voltage	V ₁	V _{DD} -0.3~+0.3	V	GND=0V
Output Terminal Voltage	Vo	V _{DD} -0.3~+0.3	V	GND=0V
Power Dissipation	PD	200	mW	
Operating Ambient Temperature	Topr	-10~+70	Ĉ	
Storage Temperature	Tstg	-30~+125	Ĉ	

Operating Condition (Ta = 25°C)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain Supply Voltage	V _{DD}	GND = 0 V	- 8	—15	-16	V

Electrical Characteristics (Ta = 25° C, V_{DD} = -15V, GND = 0V)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Input drain current	IDD	No loard		3		mA
Total Power Dissipation	Ptot	Clock output 40kHz		45		mW
OX1 Input Terminal			•			
Voltage "H" Level	ViH		0		-1	v
Voltage "L" Level	ViL		V _{DD} +1		V _{DD}	V
Input Leakage Current	I _{LK}	$V_1 = 0 \sim -15V$			30	μA
OX2 Output Terminal	- -				•	
Output Current "H" Level	lóнı	$V_0 = -1 V$	0.6			mA
Output Current "L" Level	I _{OL1}	$V_0 = -14V$	0.5			mA
Output Leakage Current	ILOL1	V ₀ =V _{DD}			30	μA
Output Leakage Current	ILOH1	V ₀ =GND			30	μA
OX3 Output Temrinal	. I				•	
Output Current "H" Level	I _{0H2}	$V_0 = -1 V$	1.5			mA
Output Current "L" Level	IOL2	$V_0 = -14V$	2			mA
Output Leakage Current	LOL2	V ₀ =V _{DD}			30	μA
Output Leakage Current	ILOH2	V ₀ =GND			30	μA
CP1, CP2 Output Terminal						
Output Current "H" Level	Іонз	$V_0 = -1 V$	10			mA
Output Current "L" Level	I _{OL3}	$V_0 = -14V$	10			mA
Output Leakage Current	ILOL3	V ₀ =V _{DD}			30	μA
Output Leakage Current	I _{LOH3}	V ₀ =GND			30	μA
V _{GG OUT} Output Terminal (*)	•					
Output Voltage	Vgg out			-14		V

(*) This terminal generates V_{GG} voltage exclusively applied for BBD manufactured by Matsushita Electronics Corporation, therefore, some times it might not be applicable for the device other than the V_{GG} voltage of MEC's BBD. V_{GG OUT} changes by following formula depending on the value of V_{DD}.

$$V_{GG OUT} \doteq \frac{14}{15} V_{DD}$$

Terminal Assignments

Terminal Description

Terminal No.	Symbol	I/O	Terminal Name	Terminal Name Description						
1	GND	Power supply	Ground	Connected to GND of the	circuit.					
2	CP1	0	Clock output 1	This terminal outputs clocl of CP2 with Duty 1/2, 1/2 frequency	< signal that is a revers phase frequency of oscillation					
3	V _{DD}	Power supply	pply V _{DD} apply -15V is applied.							
4	CP 2	0	Clock output 2	This terminal outputs clock phase of CP 1.	< signal that is a reverse					
5	OX 3	0		C, R are connected in case	In case of separate excita-					
6	6 OX 2 0		C and R is connected.	of selfoscillation.	tion, OX3 and OX2 are					
7 OX 1		1		circuit).	OSC input.					
8 $V_{GG OUT}$ 0 V_{GG} voltage output14V is output. ($V_{DD} = -15V$) $V_{GG OUT}$										

Example of Oscillation Generation Circuit

Following is an example of C1, R1 and R2. Figure 1 shows f_{CD}^* –R2 characteristics.

Constant (Ω) (Ω) R_1 R_2 f_{0SC}** (kHz) \mathbf{C}_1 (pF)(kHz) Example f_{CP}* Example 1 0 5 k~1 M 33 15~1500 7.5~750 2 22k Example $5 k \sim 1 M$ 100 5.2~440 2.6~220 3 22k Example 5 k~1 M 200 1.4~280 0.7~140

* Clock output frequency of CP1 or CP2 terminals.

** Oscillation frequency of OX1, OX2 and OX3.

Oscillation circuit of the MN3101 is composed of 2-stage inverter and oscillation frequency is defined by the time constant of C1 and R2 shown left.

Resistance R_2 (Ω)

Figure 1 Example of characteristics of clock oscillation frequency.

The maximum clock frequency

The upper limit of the value of clock frequency is determined depending on the load capacitance and power consumption.

The permissible dissipation for this LSI is = $P_D = 200$ mW.

If the clock frequency on the load capacitance is increased, the power consumption will be increased. (Refer to Figure 2.)

Accordingly, in order to utilize the MN3101 with dissipation less than the permissible value, it is necessary to select adequate values for the clock frequency and load capacitance.

Figure 3 shows an example of the dependence of the maximum clock frequency on the load capacitance in $P_D = 150$ mW.

By connecting a resistance to the clock output terminal, it is made possible to increase the value of the maximum clock frequency without increasing dissipation. (Refer to Figures 2 and 3.)

It is because the dissipation on the LSI side is lessened, as a part of the power consumption required for driving the load capacitance is consumed by the series resistance.

Figure 2 Example of the dependence of power consumption on the clock frequency.

mum clock frequency in the power consumption of 150mW.

S-M Ø S SYSTEMS INC 10E D 7932909 0000679 9

▷ MELODY IC TABLE*

			te)	Tune	Selection	lent	tternal)	Signal		Transducer			crivelope		Collighon	- Tuge	mode	Γ		Supply		rackage
-		Maximum Number of	Binary Co	Serial T.	Acron	Preameter	BUSY Chin	Dynamic or	Magnet:	Piezo	Edemol	Digital CH	Envelope	External		Dia-eho	Ston	121	31	51	(diQ) via	Note
L	7910 series ¹	2 (128)	0	-	10	0	-	0	-	-	Ő	-	· C	10		\$		0	0	-	16	High quality tone Alarmergingon/oloip0 Dynamic SP Drive
	7920 series	1 (64)	1	-		-	1-	0		-	0	-	·	☆		☆ `	Ι-	0	10	-	8	Oynamic SP Drive (External)
—	7930 series	1 (64)	<u> </u>		1-	10	1-	10	-	-	0	1-	·	\$		☆	-	0	0	-	14	Dynamic SP Drive
	SVM/940	-		1					1	1			1-	0	0		-					 Multi melody type
<u>8</u>	SVM/941	-	-	0										Ľ	-	0	0				[transducer drive
8	SVM/942	(512)					1			1			10		0	-	-		ļ			
9	SVM/943	<u> </u>		<u> </u>		-	- 1	_	0	10		_	Ľ	<u> </u>	1-	10	0	0	0	-	16	
6	SVM/944					1			-	1			1-	10	0	-	-	ľ	ľ			
18	SVM/945		0	-		1		1			1	1		Ľ	1-	10	10				ł	
1 "	SVM/946	(512)		1						{			10	-	\Box	1-	-	1				
┝──	SVM/94/		-	I			_	I			1		Ĭ	1	-	10	0					
	SVM/950	4					1	-	0	\log	- 1				0	-	-		1			High impedance
l is	SVM/951	4						L	ļ -	Ľ			-	0	-	0	0					transducer drive
ß	SVM/952	1						0	_	- I	0			Ŭ	0	-	-					
ទ្រ	SVM7953	4	-	_	_	0		<u> </u>		ļ	L_	-			-	0	0	0	0	_	16	
Ĕ,	SVM/954	(64)					1	_	0	0	_				0	-		Ŭ	Ŭ			· ·
S	SVM7955	(0-7)						L	<u> </u>	_	I	ļ	10	-	-	10	0					
	SVM/956							0		_	0		Ĩ		0	-	-					
	SVM/95/			—	Ľ		I	L	<u> </u>		<u> </u>			1	1	0	0					
	SVM/960	4											1 -	0	\Box							-High quality tone
lies	SVIV17961	· ·	0										L		-	0				- 1		+1.5(V)/5(V)
S	SVIVI7962	(127)											0	_	\square							
ß	SVIVI7963				0	0	0	0	-		0	-			-	10	_				16	
۲ <u>۲</u>	SVM7964	3												0	0	-				- 1		
S	SVM7905	-	*	1									L		-	0						
	SVIV/900	(127)											0	_	0	-						*1
_	SVM7907												<u> </u>			0						Address start
i li	SVN17970	8	-	0										0								-Multi melody type
8	SVM7971	(040)											0	-								Dynamic SP Drive
ßi	SVM7972	8 (640)	0	-	0	0	0	0			r	7	F	2	*	3	0		☆		18	*1.5(V)/5(V) *2
۶I	SVM7973	(040)											Р	-		-	Ŭ		~			Binary coder plus
S	SVM7975	11 (640)	*	2									1-	Ч								*3
-	SVM7990										F		Р		0			1		\rightarrow		Selectable at each tune
٥ł	SVM7991	8											-	0	0	-	_					Multi malody type Dynamic SP Drive
erie.	SVM7992	(5.6)	-	0									<u> </u>		_	9	4					
ő	SVM7993	(512)						1					0	-	9		-	ļ	ļ			
ğ İ	SVM7994		-+		-	0	-	0	-	-	0	—			_	9	4	ol	0	_[16	
ξŀ	SVM7995	4			.				Ì			ĺ	-	0	읙	-	-	-	-			
ю	SVM7996	(510)	0	-										-+	-		끡					
┠	SVM7997	(512)							[0	-	읙	금	금					
	SVM7900			\neg	+		-		-	-					긞	끡	쒸	-		-+		
8≞⊦	SVM7901	1						ĺ				i	-	0	21	긁						 High impedance transducer drive
E E	SVM7902	(EA)		-	- [-	-	-	0	0	-		*4	\rightarrow	긁	읙	-	0	0	-	8	*4 OSC. resistor is built
ñ&¦	SVM7903	(04)											Ö		2	금						in (mask option)
:≏Ma	sk option	# Ongoi	na 119		arvin	- 010				.	J.					9						(0
Mini	num melody IC or	der is 100	ຸດດດ	niec		s pro leser		enit (S.M	19 6-				lahir	.							(Continue)
• • • • • •	nam molody io or		,000	pico	r	cast	5 000	ount	0-IVIC	-a i0	n she	CIIIC	ava	napili	ıy.							

G-1

S-M & S SYSTEMS INC LOE D 7932909 0000680 5

T-77-13

		Les -	Tune	oelection	<u>بر</u>			Transf	1 all sourcer	1	Envelope		Oscillation		apour			Power	Supply	Package	
т	ype No.	Maximum Number of Tu Number of Tu	Binary Code	Accompanie	Preamplifier(inte	BUSY END Si	Dynamic Sp	Magnetic	Piezo	External CR	Digital Envelope	G set	External Clock	Level hold	One-shot	Stop	1.5V	3V	5V	pin (D(P)	Note
1	SVM7800			1								0	-								High impedance transducer drive # 5 i evel hold of
ļ	SVM7801					•						0	픡	_							one shot
8	SVM7802								-			-	0	0		-	Í				pin selection
۶.	SVM/803	1			1							Ο	-					0		A	
ő l	SVM/804		-	-	-	-	-	0	0	-	-	_	0				9	0	-	0	
2	SVM/805	(63)										Õ	-1								
Ĩ ≷	SVM/000											1	0		2						
~ I	SVN17808				1					1		Ō		- [ol	~					*6 One shot retringer function
	SVM7809			1	1							-	Ō		*6						
	SVM7820			-	1			_				0	—								·LED drive
	SVM7821											-	0								 High impedance transducet drive
g	SVM7822			1								0	-	C							* 7 Level hold or
Ť	SVM7823	1						ļ	ļ			-	0	*	7						pin selection
ŝ	SVM7824] 1			-	_	_	0	10	_	-	0	-				-	10			
178	SVM7825	(63)	-	1	_	1		1	1	ļ		-	10	<u> </u>							
≷	SVM7826	(00)			1			ļ		1		P_{0}	-		0						
0	SVM7827	1										1-	10	_	_	0					
	SVM7828	1	ļ									면	15		Q						*8 One shot retrigger function
L	SVM7829		 	1-	_	 					+	1-	ΗĽ	┠╌┥	**			1		<u>├</u>	+High quality tone
18 m	SVM7860	1	_	0		1-	0	1-	-	0		R	15	0	-	-		☆		8	Oynamic SP Drive (External)
N S	SVM7861	(127)		Ľ			Ľ	<u> </u>		L.	<u>i</u>	1	10	L			J.,			L	

☆ Mask option

G-2

S-M & S SYSTEMS INC LOE D 7932909 0000681 7

T-77-13

.

▷STANDARD MELODY LIST

	Song Title	Code No.	Song Title	Code No.	Song Title
7910C	Holdilidia	\$7943Co	Romance de amor	☆7993Coc	Mountain Musician
7910E	Two Minuets		O sole mio	7993Con	Westminster
	Dark eyebrows		Die Lorelei	H	A malden's prayer
7910G	Melodia A		The cuckoos waltz		For Elise
	Melodia B		Old folk at home		Romance de amor
7910i	Home on the range	☆7943Cos	Spring		Amaryllis
	Green Sleeves		Hymne a Lamour		Symphony # 40 (Mozart)
7910K	lullaby (two songs)		La Mer		Dark eyebrows
7910N	Musunde Hiraite		Farandolles		De camptown races
70100	Mostminster (hue tunes)		Yesterday	7993DAC	Yellow Rose of Texas-Dixie Land
70100	Westminster (two tunes)		L'eau vive		Stars and Stripes forever-Anchors Awaign
70100	Wesenlied (Brahme)		Symphony # 40 (Mozort)		Sone wore a yea ow notion I winkle hankle https://
73104	Bock a hva Bahv	+ 7943Cau	Humpe a lamour		Conton bridge is taking cown-wountain musician
7910CE	Noctume	ATONOON	Santa lucia		Home sweet home Misserlied
101002	Minuet	1	Hey Jude	7993DAF	Right Teatron side Side Case mining
7910T	Jingle Bells		L'eau Vive		We wish you a Many Yimat Fracty the snow man
7910CF	For Elise		Romance de amor		lingle Bells-Silent Night
	A maiden's praver		Yesterday		Joy to the world-The first Noel
7910CG	Romance de Amor	11	Happy birthday to you	1	O christmas tee Hark the herald Annels sim
	Petrouchka	£I	Wedding march	1	O tannenbaum-Oh little town of Bethlehem
7910CH	Westminster	7942DAN	Jingle Bells	7902Co+	X'mas song medley. Red nosed
	Ave Maria	11	Joy to the world		reindeer. O Tannenbaum Jingle
7910CM	Westminster	11	O Tannenbaum	1	bells.
	Whittington	1	We wish you a Merry X'mas	27903Cos	Happy birthday
7910CN	Holdilidia		Silent Night	€7903Coc	Wedding March
	Home on the range]]	The First Noel	★7903COE	Happy birthday
7910CP	Silent lake-side	11	Frosty the snow man	★7903Cog	Hymne a lamour
	Mountain Musician		Rudolph the red nosed reindeer	☆7903Сон	The Alphabet Song
7910CQ	Mary's little lamb			☆7903CoJ	Rock a bye Baby
	De camptown races	7950Сов	Les ferilles mortos	☆7903Cок	Old Macdonald Had a Farm
7910CR	Lorelei	7950Cop	Blue bell of Scotland	€7903Cos	Mountain Musician
	Landler tanz	7950Cof	Yodel	★7903Cov	Jingle Bells
7910CS	Amaryllis	7950Сон	Cantate # 147 (Bach)	★7903CAA	Love me tender
· · ·	Symphony # 40 (Mozart)	☆7951Coc	Mexican hat dance	★7903CAB	Love Story
7910CU	Jingle Bells	☆7951Coo	Cantate # 147 (Bach)	*7903CAC	Wedding March
	Silent night	7952Cog	Cantate # 147 (Bach)	★7903CAE	Congratulations
7910CV	Joy to the world	7954CAR	Green Sleeves	★7903CAH	Silent Night
	The first noel	27955CoJ	O'sole mio	#7903CAL	Saint go'in march'in in
7910CW	O Tannénbaum	27955CoL	Happy birthday to you	★7903CAN	Jingle bells, Red nosed reindeer,
	Frosty the snow man	7955Cox	Saint go in march in in		Joy to the world.
		\$7/95500Y	MUSIC Dox dancer	★7903CAP	Music box dancer
7920A	The cuckoos waltz	27955CAF	Mountain Musician	★7903CAR	Wedding march (Long version)
79208	Home sweet home	27855CAN	Modding March	#7903CAS	Let me call you my Sweet heart
7920C	Jingle Bells	×19000BC	wedding warch	27903CBA	Jingle Bells.
7920M	Wedding march	79620-1	Green Sleeves	☆7903C88	Silent Night
7920Q	Victory Song		Home on the range	1 7003CBN	Hymne a lamour
7920AH	Wiegenlied (Brahms)		Dina Dona	# / 9030BP	Mother of mine
		4 1	Two Minuets	×1803080	happy binnday
7930B	Home sweet home				Modeling March
7930C		7975Cog	Landler tanz	☆7903Da+	Jinde Rel's Red Nosed Reindear Joy to the world
7930	Mostminator		Amaryllis	☆7903Day	For Elise
702004	Virikago po ido	1	Home on the range	7902DcF	Christmas song medley
703000	runayo no ula linate Belle	(Green Sleeves	★7903Dск	Easter Paradise
793030	We wish you a merry Y'mae		For Elise	7902Dcs	Rock A bye baby
7930GD	Rudoloh, the red-posed Reindoor		A maiden's prayer	#7903Dct	Santa Claus is coming to town
7930GF	For Flise	L	Mountain Musician	#7903DCV	When you wish up on a star
	100		Yodel	₹7903DEA	You light up my life
9420.00	Holdilidia		Ding Dong	★7903Dєв	Wargner's Wedding March
	Minuet (Bach)		Beep sound	7902DEC	Christmas Medley
	Green Sleeves		westminster	1 1279030€н	Congratulation
	Symphony # 40 (Mozart)	79920-0	Y'mas sono modieu (9 turco)		
ļ	Home on the range	199200A	Green Sleaver	1 1	
	Silent lake-side	H 1993000	De camptown races	}	
1	Mountain Musician		For Elico		
	Happy birthday to you		Romance de amor		
7943Cor	Green Sleeves				
7943Coe	Green Sleeves De camptown races		orelei		
7943Coe	Green Sleeves De camptown races For Elise		Lorelei The cuckoos waitz		

G-3

S-M 0 S SYSTEMS INC LOE D 7932909 000662 9

STANDARD MELODY LIST

Code No	Song Title	Code No	Song Title	Code No	Song	I ITIP
780000	Silent Night	7820Dse	Jingle Bells Medley			
7900003	Bock a Bye Baby	7820Dsc	Music Box Dancer			
7800000	If You Love Me	7820Dse	Jingle Bells			
7800Dcv	Brahms' Lullaby	7820DsF	Silver Bells			
7800DEA	Love Story	7820Dsg	it's a Small World			
7800Dep	Happy Birthday to You	7820DsH	Over The Rainbow			
7800Dec	Jingie Bells	7820DsJ	-Easter Parade/Peter Cottontall			
7800DE0	Old Macdonald				-	
78000EP	Twinkle Twinkle Little Star					
7800DE0	Romance D'amor					
7800DEB	White Christmas					
7800DES	Wedding March (Wagner)					
7800DET	Wedding March (Mendelssohn)					
7800Dev	You are my Sunshine					
7800Drs	O Tannenbanm/Silent Night	ļ				
7800DFC	Silver Bells					
7800DFF	Aure Lee		· ·		ļ	
7800DFG	Let me call you my sweet heart	1		l I		
7800Dn	Mary Had a Little Lamb		l,			
7800DFP	Jesus Loves Me		-		l	
7800DFT	Yesterday		1			
7800DFV	Music Box Dancer				ļ	
7800DEV	My Way			ł		
7800Dc+	Easter Parade / Peter Cottontail	<u> </u>	<u> </u>	1	l	
7800Dop	Love Me Tender / Let Me Call You My Swee	7860Cse	Nocturne			
7802055	For Elise	7860Csc	Minuet			
1002072		7860Cse	Home on the Range	4		
		7860CsF	Green Sleeves			
		7860Csc	The Entertainer			
		7860CsH	Lorelei			
		7860Csk	For Elise		1	
		7860C6C	Tableaux d'une Exposition(Promenade)			
1		7860C6E	Je te Veux			
1		7860C6F	The Jewels of the Madonna			
	1	7860C6G	When I'm Sixty-four			
1 -	1	7860C6H	Minuet (Boccherini)			
				1	l.	
	-			1		
1	· ·	1	1	1		
		1		· .		
1					1	
1						
1					ļ	
						-
					1	
				Į.		
1	1			l l		
	· ·					
1						
				-		
1						
			1			
				l.		
1	1	1		U	1	

G-4

. . .

.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

- -----

T-77-13

MELODY IC DESIGN FLOW

.

G-5

EPSON

SVM7940C Series

Multi-Melody IC

- 512 Words Melody ROM
- Piezo Transducer Direct Drive
- 4 Melodies Max. (Binary Code Selection)
 8 Melodies (Serial Trigger Selection)

DESCRIPTION

The SVM7940C Series are CMOS IC circuits which contain a programmed ROM for playing tunes. It is designed for electronic watches or music boxes. The SVM7940C series has 512 notes and a maximum of 4 or 8 melodies may be selected by switch.

NOTE: These are ongoing user service products.

FEATURES

- Mask programmable up to 512 notes
- Maximum 4 or 8 melodies can be selected by switch
- Can be driven by DC pulse or AC pulse (Mask selection)
- Piezo transducer direct drive
- NPN transistor coil drive
- Melody can be stopped halfway by switching (Only applied to one-shot mode)
- Sound demonstration capability
- Mono tone
- Available for high impedance buzzers
- Hourly chime (Option)
- PackageDIP-16pin (plastic)

BLOCK DIAGRAM

■ PIN CONFIGURATION

SEIKO EPSON CORPORATION

■ ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS (V _{SS}						
Rating	Symbol	Value	Unit			
Supply voltage	V _{DD}	–0.3 to 5.0	V			
Input/Output voltage	V _{I/O}	–0.2 to V _{DD} +0.2	V			
Operating temperature	T _{opr}	–20 to +65	°C			
Storage temperature	T _{stg}	-65 to +150	°C			
Soldering temperature and time	T _{sol}	260°C, 10s (at lead)	—			

■ ELECTRICAL CHARACTERISTICS

ELECTRICAL CHA	RACIE	151165				(V _{SS} =	0V, Ta =2	5°C)
Characteristic	Symbol		Condition		Min.	Тур.	Max.	Unit
Operating voltage	V _{DD}				1.2	1.5	2.0	V
"1" input voltage	VIH				V _{DD} -0.1	—	V _{DD}	V
"0" input voltage	VIL				V _{SS}	—	V _{SS} +0.1	V
"1" input current (Terminal OSC1)	lih1	V _{DD} =1.5V,	V _{IH1} =V _{DD}		—	—	0.05	μA
			Serial tigger s	election	1.5	_	15	
(Terminal SEL1 SEL2)	I _{IH2}	V _{DD} =1.5V	Binary code	Standby	—	_	0.05	μA
		VIH2=VDD	selection	Play	1.5	—	15	
"1" input current	luue	V _{DD} =1.5V		Standby	_	—	0.05	
(Terminal STP)	ЧНЗ	$V_{IH3}=V_{DD}$		Play	1.5	—	15	μΑ
"1" input current (Terminal MT, TST)	l _{IH4}	V _{DD} =1.5V,	V _{IH4} =V _{DD}		1.5	_	15	μA
"1" input current (Terminal TST, OSC1, SEL1, SEL2, MT, STP)	IIL	V _{DD} =1.5V V _{IL} =V _{SS}			_	_	0.05	μA
"1" output current (Terminal OSC2)	Іон1	V _{DD} =1.2V,	V _{OH1} =1.1V		3.0	_	30	μA
"0" output current (Terminal OSC2)	I _{OL1}	V _{DD} =1.2V,	V _{OL1} =0.1V		3.0	_	30	μA
Input amplitude	Aı	V _{DD} =1.5V, signal appli	when external r ied to OSC1	eference	$\left \frac{V_{DD}}{2}\right \pm 0.3$	_	_	v
Average current drain during standby	I _{STB}	V _{DD} =1.5V,	All terminals op	en	_	_	0.3	μA
Average current drain during play	I _{OPR}	V _{DD} =1.5V, V _{DD} conne	f _{OSC} =32.768kH cted to terminal	z MT	_	40	80	μA

■ OSCILLATION CHARACTERISTICS (CR Oscillation)

	(V _{SS} <i>=</i> 0V, Ta=25°C)					
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillator frequency	fosc	V _{DD} = 1.5V VR=620kΩ	-30	32.768kHz	+30	%
Oscillator self-start voltage	V _{STA}	VR=620kΩ		—	—	V
Oscillator stop voltage	V _{STP}	VR=620kΩ	—	—	1.2	V

SVM7940 S	SERIES (Masl	<pre>selection)</pre>
-----------	--------------	-----------------------

Туре	Oscillation	Tune mode	Tune selection
SVM7942	CR self OSC.	Level hold	Serial trigger selection
SVM7943	CR self OSC.	One-shot	Serial trigger selection

■ BASIC EXTERNAL CONNECTION

• SVM7942, SVM7943

■ CIRCUIT FOR SELECTION: at a position A of above block diagram 1 & 2.

■ SELECTION OF SONG AND SOUND DEMONSTRATION (Mask selection)

Terminal Options	SEL2	SEL1	МТ		
(1)	Select song only	Sound demo only			
(2)	Select song only	Select song and sound demo	Alarm input or		
(3)	Only when both SEL1 a song and sound demo,	and SEL2 are triggered, select or select song only.	sound demo input		
(4)	Select song by binary o	code of SEL1 and SEL2 (Max.4 tunes))		

■ PACKAGE DIMENSIONS

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

All product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©Seiko Epson Corporation 1998 All rights reserved.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

Electric Device Information of EPSON WWW server

http://www.epson.co.jp

CHARACTERIST	TIC	SYMBOL	RATING	UNIT	
Supply Voltage	V _{CC} ,V _{EE}	±18	v		
Differential Input	DVIN	±30	v		
Input Voltage	VIN	$V_{CC} \sim V_{EE}$	v		
	TA7504P	L D	300	mW	
Power Dissipation	TA7504S		400		
Operating Temperatu	Topr	-30 ~75	°c		
Storage Temperature	Tstg	-55 ~125	°c		

Lead pitch is 2.54 and tolerance is ±0.25 against theoretical center of each lead that is obtained on the basis of No.1 lead.

JEDEC	-	
TOSHIBA	S7A-P	
		7

-289-

į

The star from the same of some . .

T-79-05-10

TA7504P/S

والمراجع والمراجع

ELECTRICAL CHARACTERISTICS (v_{CC} =15V, v_{EE} =-15V, Ta=25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	VIO	1	R _g ≦10kΩ		1	5	mV
Input Offset Current	IIO	2	-	-	30	200	nA
Input Bias Current	II	2	-	-	200	500	nA
Common Mode Input Voltage	CMVIN	3	-	±12	±13	-	V
Mavimum Autnut Voltage	VOM	4	$R_L \ge 10 k\Omega$	±12	±14	-	v
Maximum output voitage	VOMR	1 7	$R_L \ge 2k\Omega$	±10	±13	-	
Maximum Output Voltage Swing	V _{Op-p}	5	$R_L=10k\Omega$, f=1kHz	24	28	-	v
Output Short Circuit Current	IOS	4	-	-	±20	-	mA
Input Impedance	ZIN	-	f=1kHz	0.3	1	-	MΩ
Output Impedance	ZOUT	-	f=1kHz	-	60	-	Ω
Voltage Gain	GV	-	$R_L=2k\Omega$, $V_{OUT}=\pm 10V$ f=10kHz	20	100	-	×10 ³
Common Mode Input Signal Rejection Ratio	CMRR	3	CMV _{IN} =±10V, f=100Hz	70	90	-	dB
Supply Voltage Rejection Ratio	SVRR	1	$R_g \leq 10 k\Omega$	-	30	150	μV/V
Power Dissipation	PD	6	-	-	50	85	m₩
Temperature Coefficient of Input Offset Voltage	4V10/4T	1	$\begin{array}{l} R_g \leq 10 k\Omega, \\ T_a = -30 \sim 75^{\circ} C \end{array}$	-	5	50	μV/ ⁰ C
Slew Rate	SR	7	$R_{L}=2k\Omega$	-	0.5	-	V/µs
Rise Time	tr	8	$C_{T} = 100 \text{ pF}$ $B_{T} = 2k\Omega$	-	0.3	-	μs
Over Short	eover	1	CL LOOPL, KL LKW	-	5	-	%
Input Noise Voltage	e _{np-p}	9	Rg=10kΩ, f=0 ~100Hz	-	6	-	μV
			· · · · · · · · · · · · · · · · · · ·				

EQUIVALENT CIRCUIT

ۆ

-290-

DE 9097247 0019130 1 T-79-05-10 TA7504P/S

TEST CIRCUIT

(1) V_{10} , $\Delta V_{10}/\Delta T$, SVRR

 $v_{IO} = v_{OUT} / 1000$

$$SVRR = \frac{V_{OUT} - V_{OUT} 2}{1000 \times 5}$$

$$V_{OUT1} ; (V_{CC}, -V_{EE} = 17.5(V))$$

$$V_{OUT2} ; (V_{CC}, -V_{EE} = 12.5(V))$$

$$d V_{IO} / dT = |V_{IO}(25^{\circ}C) - V_{IO}(-30^{\circ}C)| / 55$$

$$d V_{IO} / dT = |V_{IO}(25^{\circ}C) - V_{IO}(75^{\circ}C)| / 50$$

(2) I_I, I_{IO}

į

$$I_{IO} = |I_{I2} - I_{I3}|$$

 $I_{I} = \frac{I_{I2} + I_{I3}}{2}$

CMV _{IN} : V _{OUT} =±	:10(V _{DC}), V _{IN} MEASURED
CMRR : V _{IN} =7.	07(V _{rms}), V _{OUT} MEASURED
CMRR = 20 Log	$\frac{V_{\rm IN}}{\frac{V_{\rm OUT}}{1000}} = 20 \ \text{log} \ \frac{7070}{V_{\rm OUT}} \ (\rm dB)$

-291-

TOSHIBA, ELECTRONIC D2 DE 9097247 D019131 3

الحاصيين التهاهة حنيت بالاسط ليهد وبالا

TA7504P/S

(4) V_{OM} , V_{OMR} , I_{OS}

V _{OM} ,V _{OMR}	:	S₩2	:	OPEN CIRCUIT			
		sw_1	:	TERMINAL 1 OR 5			
IOS	:	s₩2	:	SHORT CIRCUIT			
		SW_1	:	TERMINAL 1 OR 5			

T-79-05-10

(5) G_V, V_{Op-p}

C : DC COUPLE

 $\begin{array}{rl} C_{\rm I} & : \mbox{ HF BYPASS} & & \\ & \omega \gg 1/RC & & \\ & & G_{\rm V} = V_{\rm OUT}/V_{\rm IN} & & \end{array}$

ž

vcc

 $P_{D}=(V_{CC}-V_{EE}) I_{CC}$ $=(V_{CC}-V_{EE}) I_{EE}$

-292-

TOSHIBA, ELECTRONIC D2 DE 9097247 0019132 5 T-79-05-10 TA7504P/S (7) SR Vout

(8) RESPONSE TIME

(9) e_{np-p}

-293-

ž

j

.

j

-

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA75558P, TA75558S, TA75558F

DUAL OPERATIONAL AMPLIFIER

The TA75558P, TA75558S and TA75558F are Low-Noise Operational Amplifiers with High Speed and Wide Bandwidth.

FEATURES

- Internal Frequency Compensation Type
- Pin Compatible with TA75458P, TA75458S and TA75458F
- Possible to Exchange the Position of 9 Pin for 1 Pin Because of Pin Connection Being Symmetric. (TA75558S Device Only)
- Wide Band Range : f_T = 3MHz (Typ.)
- Suitable Application for Active Filter Equalizer Amplifier and Headphone Amplifier.

PIN CONNECTION (TOP VIEW)

TA75558P

TA75558S

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TA75558P TA75558S	TA75558F	UNIT	
Supply Voltage	Vcc	+ 18	+ 18	V	
Supply Voltage	VEE	– 18	– 18		
Differential Input Voltage	DVIN	± 30	± 30	V	
Input Voltage	VIN	V _{CC} ~V _{EE}	V _{CC} ~V _{EE}	V	
Power Dissipation	PD	500	240	mW	
Operating Temperature	T _{opr}	- 40~85	- 30~70	°C	
Storage Temperature	T _{stg}	- 55~125	- 55~125	°C	

ELECTRICAL CHARACTERISTICS (V_{CC} = 15V, V_{EE} = -15V, Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Input Offset Voltage	VIO	1	$R_g \leq 10 k\Omega$	—	0.5	6	mV	
Input Offset Current	li0	2	—	—	5	200	nA	
Input Bias Current	Ц	2	—	—	60	500	nA	
Common Mode Input Voltage	cmv _{IN}	3	—	± 12	± 14		V	
Maximum Output	∨ом	6	$R_L = 10k\Omega$	± 12	± 14	_		
Voltage	VOMR	6	$R_L = 2k\Omega$	± 10	± 13	_	v	
Source Current	l _{source}	8	—	_	40	_	mA	
Sink Current	l _{sink}	7	—	_	40	_	mA	
Voltage Gain (Open Loop)	GV	5	V_{OUT} = ± 10V, R _L = 2k Ω	86	100	_	dB	
Common Mode Input Signal Rejection Ratio	CMRR	3	$R_g \leq 10 k\Omega$	70	90	_	dB	
Supply Voltage Rejection Ratio	SVRR	1	$R_g \leq 10 k\Omega$	_	30	150	μ V / V	
Slew Rate	SR	9	$G_V = 1$, $R_L = 2k\Omega$		1.0	_	V / μ s	
Unity Gain Cross Frequency	fŢ	5	Open Loop	_	3.0		MHz	
Supply Current	ICC, IEE	4		—	4.0	6.0	mA	
Equivalent Input Noise Voltage	V _{NI}	_	$R_S = 1k\Omega$, f = 30Hz~30kHz	_	2.5		μV _{rms}	

TOSHIBA

TEST CIRCUIT

(1) V_{IO} , S_{VRR}

- $V_{IO} = V_{OUT} / 100$
 - SVRR = $20\ell og E (dB)$ $E = \left| \frac{V_{OUT1} - V_{OUT2}}{(V_{CC1} - V_{EE1}) - (V_{CC2} - V_{EE2})} \right| \times \frac{1}{100}$ VOUT1 : VOUT (V_{CC}, V_{EE} = \pm 8V) VOUT2 : VOUT (V_{CC}, V_{EE} = \pm 18V) V_{CC1} : V_{CC} = -8V V_{EE1} : V_{EE} = -8V V_{CC2} : V_{CC} = + 18V V_{EE2} : V_{EE} = - 18V

(2) II, IIO

Vcc

- CMRR = $20\ell \text{og } G_D / G_C (dB)$ G_D : DIFFERENTIAL VOLTAGE GAIN G_C : COMMON MODE VOLTAGE GAIN
- CMV_{IN} : V_{IN} = -12V, 12V SUPPLIES

TOSHIBA

(4) I_{CC}

• I_{CC} : V_{CC} , $V_{EE} = \pm 15V$

(5) G_V, f_T

- G_V = 20ℓog e_o/e_i(dB) R≥1/W_{C1}
 - C₁ : COUPLING CONDENSER
 - C2 : HIGH FREQUENCY BYPASS CONDENSER
- f_T : INPUT FREQUENCY AT $e_i = e_o$

(6) V_{OM}, V_{OMR}

 V_{OM} : (+): SW1 IS SIDE A, SW2 IS SIDE A (-): SW1 IS SIDE B, SW2 IS SIDE A
 V_{OMR} : (+): SW1 IS SIDE A, SW2 IS SIDE B (-): SW1 IS SIDE B, SW2 IS SIDE B

TOSHIBA

(7) l_{sink}

(8) I_{source}

(9) SR

TOSHIBA

CHARACTERISTIC

PACKAGE DIMENSIONS DIP8-P-300-2.54A

Unit : mm

Weight : 0.5g (Typ.)

PACKAGE DIMENSIONS

SIP9-P-2.54A

Unit : mm

Weight : 0.9g (Typ.)

Weight : 0.1g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

● TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC TA78L005AP, TA78L006AP, TA78L007AP, TA78L075AP, TA78L008AP TA78L009AP, TA78L010AP, TA78L012AP, TA78L132AP TA78L015AP, TA78L018AP, TA78L020AP, TA78L024AP

THREE TERMINAL POSITIVE REGULATORS 5 V, 6 V, 7 V, 7.5 V, 8 V, 9 V, 10 V, 12 V, 13.2 V, 15 V, 18 V, 20 V, 24 V

FEATURES

- Suitable for TTL, C²MOS Power Supply
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Maximum Output Current of 150 mA ($T_i = 25^{\circ}C$)
- Available in the Plastic TO-92MOD Package

Weight: 0.36 g (Typ.)

EQUIVALENT CIRCUIT

980910EBA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

MAXIMUM RATINGS (Ta = 25° C)

CHARACTERI	STIC	SYMBOL	RATING	UNIT
Input Voltage	TA78L005AP TA78L006AP TA78L007AP TA78L075AP TA78L008AP TA78L009AP TA78L010AP TA78L012AP TA78L132AP TA78L015AP	V _{IN}	35	v
	TA78L018AP TA78L020AP TA78L024AP		40	
Power Dissipation	(Ta = 25°C)	PD	800	mW
Operating Temperatu	re	T _{opr}	- 30~85	°C
Storage Temperature		T _{stg}	- 55~150	°C
Junction Temperature		Tj	150	°C
Thermal Resistance		R _{th (j-a)}	156	°C/W

TA78L005AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 10 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		4.8	5.0	5.2	V
Line Regulation	Pagulina	1	T 25°C	$7.0 V \leq V_{IN} \leq 20 V$	—	55	150	m\/
Line Regulation	Regime		$T_{j} = 25 C$	$8.0 V \leq V_{IN} \leq 20 V$	_	45	100	
Load Population	Pagulaad	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	—	11	60	m\(
Load Regulation	Regnoau		$T_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	—	5.0	30	
				$7.0 V \leq V_{IN} \leq 20 V,$	1 75		5 25	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	4.75		5.25	V
				$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	4.75	—	5.25	
Quiescent Current		1	$T_j = 25^{\circ}C$		_	3.1	6.0	m ^
Quiescent Current	в		T _j = 125°0	C			5.5	
Quiescent	415	1	T 25°C	$8.0 V \leq V_{IN} \leq 20 V$	—	—	1.5	~^^
Current Change	ЪВ	'	$r_{j} = 25 C$	$1.0 \text{ mA} \leq \text{IOUT} \leq 40 \text{ mA}$	—	—	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz \le f \le 100 kHz	—	40	—	μV_{rms}
Long Term Stability	∆V _{OUT} /∆t	1		—	—	12	—	mV /kh
Rippla Rejection	DD	2	f = 120Hz	2,	11	10		40
Ripple Rejection	n.n.	5	$8.0 V \leq V$	$IN \leq 18 V, T_j = 25^{\circ}C$	41	49		UD UD
Dropout Voltage	VD	1	T _j = 25°C,	lout = 150 mA	_	1.7	_	V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	mA	—	- 0.6	—	mV/°C
Voltage								

TA78L006AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 11 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		5.76	6.0	6.24	V
Line Regulation	Pogulino	1	T 25°C	$8.1 V \leq V_{IN} \leq 21 V$	_	50	150	m\/
Line Regulation	Regime		$r_{j} = 25 C$	$9.0 V \leq V_{IN} \leq 21 V$	_	45	110	
Load Degulation	Decileed	1	T. 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	_	12	70	
Load Regulation	Regiload		$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	5.5	35	
				$8.1 V \leq V_{IN} \leq 21 V$	F 7		6.2	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	5.7		0.5	V
			$ _{j} = 25^{\circ} C _{1}$	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	5.7	—	6.3	
Quieccent Current		1	T _j = 25°C		_	3.1	6.0	
Quiescent Current	чВ		T _j = 125°0	C	_	_	5.5	
Quiescent	415	1	T 25°C	$9.0 V \leq V_{IN} \leq 20 V$	_	_	1.5	
Current Change	⊿чв		$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	_	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	, 10 Hz \leq f \leq 100 kHz	_	40	—	μV _{rms}
Long Term Stability	∆V _{OUT} /∆t	1		—	_	14	_	mV /kh
Rippla Rejection	рр	2	f = 120 H	Ζ,	20	47		db
Ripple Rejection	n.n.	5	$9.0 V \leq V$	IN \leq 19 V, T _j = 25°C	39	4/	_	UB
Dropout Voltage	VD	1	T _j = 25°C,	IOUT = 150 mA	_	1.7	—	V
Average Temperature			-					
Coefficient of Output	тсуо	1	1 _{OUT} = 51	mA	_	- 0.7		mV / °C
Voltage								

TA78L007AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 12 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		6.72	7.0	7.28	V
Line Regulation	Pogulino	1	T 25°C	$9.2 V \leq V_{IN} \leq 22 V$		50	160	
	Regime		$r_{j} = 25 C$	$10 \text{ V} \leq \text{V}_{IN} \leq 22 \text{ V}$		45	115	
Load Regulation	Pageload	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$		13	75	
	Regnoau		$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		6.0	40	
				$9.2 V \leq V_{IN} \leq 22 V$	6 65		7 35	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	0.05		7.55	V
			25 C	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	6.65	—	7.35	
Quiescent Current		1	T _j = 25°C		_	3.1	6.5	mA
	чВ		T _j = 125°0	2	_		6.0	
Quiescent	415	1	T 25°C	$10 \text{ V} \leq \text{V}_{IN} \leq 22 \text{ V}$			1.5	
Current Change	B	•	1 _j = 25 C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$			0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	z, 10 Hz ≤ f ≤ 100 kHz		50	_	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1				17	_	mV /kh
Rinnle Rejection	R R	3	f = 120 H	Ζ,	37	16		dB
	N.N.	5	$10 V \leq V_{ }$	$_{\sf N}$ \leq 20 V, T $_{\sf j}$ = 25°C	57	40		
Dropout Voltage	VD	1	$T_{j} = 25^{\circ}C_{j}$	lout = 150 mA		1.7	—	V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	mA	—	- 0.75	—	mV / °C
Voltage								

TA78L075AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 13 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		7.21	7.5	7.79	V
Line Regulation	Pagulina	1	T 25°C	$9.8 V \leq V_{IN} \leq 23 V$	—	40	170	/
Line Regulation	Regime		$T_{j} = 25 C$	$10.5 V \leq V_{IN} \leq 23 V$	_	40	120	
Load Population	Pagulaad	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	—	14	80	
Load Regulation	Regnoau		$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		6.5	40	
				$9.8 V \leq V_{IN} \leq 23 V,$	7 1 2 5		7 875	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	7.125		7.075	V
				$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	7.125	—	7.875	
Quiescent Current		1	T _j = 25°C		—	3.1	6.5	
Quiescent Current	в		T _j = 125°0	<u> </u>			6.0	
Quiescent		1	T 25°C	$10.5 V \leq V_{IN} \leq 23 V$			1.5	~~~~
Current Change	B	•	$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_		0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz \le f \le 100 kHz	—	60	—	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1			_	19	_	mV /kh
Ripple Rejection	DD	2	f = 120 H	Ζ,	27	45		48
Ripple Rejection	N.N.	5	$11 V \leq V_{ }$	$_{\sf N}$ \leq 21 V, T _j = 25°C	57	45		
Dropout Voltage	VD	1	T _j = 25°C,	lout = 150 mA	_	1.7	_	V V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	mA	—	- 0.75	—	mV / °C
Voltage								

TA78L008AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 14 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		7.7	8.0	8.3	V
Line Regulation	Pagilipa	1	T 25°C	$10.5 V \leq V_{IN} \leq 23 V$	—	20	175	
Line Regulation	Reginne	I	$r_j = 25 C$	$11 \text{ V} \leq \text{V}_{\text{IN}} \leq 23 \text{ V}$	—	12	125	
Load Regulation	Pagulaad	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	—	15	80	
Load Regulation	Regnoad	I	$T_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	—	7.0	40	
				$10.5 V \leq V_{IN} \leq 23 V,$	76		81	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	7.0		0.4	v
			1	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	7.6		8.4	
Quiescent Current		1	$T_j = 25^{\circ}C$		_	3.1	6.5	~~^
Quiescent Current	чВ		T _j = 125°0	C			6.0	
Quiescent		1	T 25°C	$11 \text{ V} \leq \text{V}_{\text{IN}} \leq 23 \text{ V}$			1.5	~~~~
Current Change	B	•	$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_		0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	C, 10 Hz \leq f \leq 100 kHz	_	60	_	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1		—	—	20	—	mV /kh
Pipple Paiastian	DD	2	f = 120 H	Ζ,	27	45		40
Ripple Rejection	n.n.	5	$12 V \leq V_{ }$	$_{\sf N}$ \leq 23 V, T $_{\sf j}$ = 25°C	57	45		
Dropout Voltage	VD	1	T _j = 25°C,	, I _{OUT} = 150 mA	—	1.7	—	V
Average Temperature								
Coefficient of Output	тсуо	1	I _{OUT} = 5	mA	—	- 0.8	—	mV / °C
Voltage								

TA78L009AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 15 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	Т	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		8.64	9.0	9.36	V
Line Regulation	Pagulina	1	T 25°C	$11.4 V \leq V_{IN} \leq 24 V$		80	200	
Line Regulation	Regime		$ _{j} = 25 C$	$12 V \leq V_{IN} \leq 24 V$		20	160	
Land Regulation	Decileed	1	τ. 25%	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	_	17	90	
Load Regulation	Regiload		j = 25 C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		8.0	45	
				$11.4 V \leq V_{IN} \leq 24 V,$	0 5 5		0.45	
Output Voltage	Vout	1	Tj = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	0.55		9.45	v
			[[$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	8.55		9.45	
Quieccent Current		1	Т _ј = 25°С			3.2	6.5	~~~
Quiescent Current	чВ		T _j = 125°C				6.0	
Quiescent	415	1	T 25°C	$12 \text{ V} \leq \text{V}_{\text{IN}} \leq 24 \text{ V}$		_	1.5	
Current Change	⊿чв		j = 25 C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{mA}$		_	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C,	$10 \text{ Hz} \leq f \leq 100 \text{ kHz}$		65	_	μV_{rms}
Long Term Stability	∆V _{OUT} /∆t	1		_		21	_	mV /kh
Rippla Rejection	рр	2	f = 120 Hz	1	26			40
Ripple Rejection	n.n.	5	$12 V \leq V_{IN}$	$_{ m J} \leq $ 24 V, T $_{ m j} $ = 25°C	50	44	_	
Dropout Voltage	VD	1	T _j = 25°C,	I _{OUT} = 150 mA		1.7	_	V
Average Temperature								
Coefficient of Output	тсуо	1	l _{OUT} = 5 n	mA	—	- 0.85	—	mV / °C
Voltage								

TA78L010AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 16 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		9.6	10	10.4	V
Line Regulation	Pogulino	1	T 25°C	$12.5 V \leq V_{IN} \leq 25 V$		80	230	
	Regime		$r_{j} = 25 C$	$13 \text{ V} \leq \text{V}_{\text{IN}} \leq 25 \text{ V}$		30	170	
Load Regulation	Pageload	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$		18	90	
	Regnoau		$T_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		8.5	45	
				$12.5 V \leq V_{IN} \leq 25 V,$	95		10 5	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	5.5		10.5	V
			1	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	9.5	—	10.5	
Quiescent Current		1	T _j = 25°C		—	3.2	6.5	mA
Quiescent Current	в		T _j = 125°0	C			6.0	
Quiescent		1	T 25°C	$13 \text{ V} \leq \text{V}_{\text{IN}} \leq 25 \text{ V}$			1.5	~~~~
Current Change	B	•	$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$			0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz \le f \le 100 kHz		70	_	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1				22	_	mV /kh
Ripple Rejection	DD	2	f = 120 H	Ζ,	36	12		48
Ripple Rejection	N.N.	5	$13 V \leq V_{ }$	${\sf N} \cong$ 24 V, T $_{\sf j}$ = 25°C	50	43		
Dropout Voltage	VD	1	T _j = 25°C,	lout = 150 mA		1.7	_	V V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	mA	—	- 0.9	—	mV/°C
Voltage								

TA78L012AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 19 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		11.5	12	12.5	V I
Line Regulation	Pagulina	1	T 25°C	$14.5 V \leq V_{IN} \leq 27 V$		120	250	/
	Regime		$I_{j} = 25 C$	$16 V \leq V_{IN} \leq 27 V$	_	100	200	
Load Regulation	Pagulaad	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$		20	100	m\/
Load Regulation	Regiload		$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	10	50	
				$14.5 V \leq V_{IN} \leq 27 V$,	11 /		12.6	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	11.4		12.0	V
			1 25 C	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	11.4	—	12.6	
Quieccent Current		1	T _j = 25°C			3.2	6.5	
	чВ		T _j = 125°0	C	_	—	6.0	
Quiescent	415	1	T 25°C	$16 V \leq V_{IN} \leq 27 V$		—	1.5	- m 4
Current Change	ЪВ	'	$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	—	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz \le f \le 100 kHz	_	80	—	μVrms
Long Term Stability	∆V _{OUT} /∆t	1		—	_	24	—	mV /kh
Rippla Rejection	DD	2	f = 120 H	Ζ,	26	41		dP
Ripple Rejection	n.n.	5	$15 V \leq V_{ }$	${\sf N} \cong$ 25 V, T $_{\sf j}$ = 25°C	50	41		UB
Dropout Voltage	VD	1	$T_{j} = 25^{\circ}C_{j}$	lout = 150 mA		1.7		V
Average Temperature	Tava	1		m۸		_ 1 0		m
Voltage	۲CVO		0UT = 5	IIIA		- 1.0		

TA78L132AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 21 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		12.67	13.2	13.73	V
Line Regulation	Pogulino	1	T 25°C	$16 V \leq V_{IN} \leq 28 V$	—	125	270	
Line Regulation	Regime		$r_{j} = 25 C$	$17 \text{ V} \leq \text{V}_{\text{IN}} \leq 28 \text{ V}$	_	105	225	
Land Regulation	Decileed	1	T. 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	_	22	120	
Load Regulation	Regiload		$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	11	60	
				$16 V \leq V_{IN} \leq 28 V,$	12.54		12.96	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	12.54		15.00	V
			$ _{j} = 25^{\circ}C _{1}$	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	12.54	—	13.86	
Quieccent Current		1	T _j = 25°C		—	3.2	6.5	
Quiescent Current	чВ		T _j = 125°0	C		—	6.0	
Quiescent	415	1	T 25°C	$17 \text{ V} \leq \text{V}_{\text{IN}} \leq 28 \text{ V}$	_	—	1.5	
Current Change	ЪВ	'	$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	—	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz ≤ f ≤ 100 kHz	_	90	—	μV_{rms}
Long Term Stability	∆V _{OUT} / ∆t	1		—	_	28		mV /kh
Pippla Pajaction	DD	2	f = 120 H	Ζ,	24	11		dp
Ripple Rejection	n.n.		$17 V \leq V_{ }$	$_{\sf N}$ \leq 27 V, T _j = 25°C	54	41		UB
Dropout Voltage	VD	1	T _j = 25°C,	lout = 150 mA	_	1.7	—	V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	mA	—	– 1.2	—	mV / °C
Voltage								

TA78L015AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 23 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		14.4	15	15.6	V
Line Regulation	Pagulina	1	T 25°C	$17.5 V \leq V_{IN} \leq 30 V$	_	130	300	
	Regime	I	$r_{j} = 25 C$	$20 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$	_	110	250	
Load Regulation	Pageload	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$		25	150	
	Regnoad		$T_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	12	75	
				$17.5 V \leq V_{IN} \leq 30 V$,	14 25		15 75	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	14.25		13.75	V
			1	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	14.25	_	15.75	
Quiescent Current		1	$T_j = 25^{\circ}C$		_	3.3	6.5	~~^
Quiescent Current	чВ		T _j = 125°0	2	_		6.0	
Quiescent	415	1	T 25°C	$20 V \leq V_{IN} \leq 30 V$			1.5	~~~
Current Change	B		$r_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		—	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz ≤ f ≤ 100 kHz	_	90	—	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1		—	_	30		mV /kh
Pipple Paiastian	DD	2	f = 120 H	Ζ,	24	40		40
Ripple Rejection	N.N.	ר	18.5 V ≦ V	$V_{IN} \leq 28.5 \text{ V}, \text{ T}_{j} = 25^{\circ}\text{C}$	54	40		
Dropout Voltage	VD	1	$T_{j} = 25^{\circ}C_{j}$	lout = 150 mA		1.7		V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	mA	—	– 1.3	_	mV/°C
Voltage								

TA78L018AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 27 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		17.3	18	18.7	V
Line Regulation	Pagulina	1	T 25°C	$21.4 V \leq V_{IN} \leq 33 V$	—	32	325	/
Line Regulation	Regime	I	$T_{j} = 25 C$	$22 V \leq V_{IN} \leq 33 V$	_	27	275	
Lood Regulation	Pagulaad	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	—	30	170	/
Load Regulation	Regnoad	I	$T_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	—	15	75	
				$21.4 V \leq V_{IN} \leq 33 V$,	17 1		18.0	
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	17.1		10.9	V
				$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$	17.1	—	18.9	
Quiescent Current		1	$T_j = 25^{\circ}C$			3.3	6.5	- m A
Quiescent Current	чВ		T _j = 125°0	C			6.0	
Quiescent	415	1	T 25°C	$22 V \leq V_{IN} \leq 33 V$	—	—	1.5	m ^
Current Change	⊔ ⊐'B	1	$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	—	—	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	C, 10 Hz \leq f \leq 100 kHz	—	150	—	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1		—	—	45	—	mV /kh
Pippla Pajaction	рр	2	f = 120 H	Ζ,	22	20		dp
Ripple Rejection	n.n.	3	$23 V \leq V_{ }$	$_{\sf N}$ \leq 33 V, T $_{\sf j}$ = 25°C	52	50	_	uв
Dropout Voltage	VD	1	T _j = 25°C,	, I _{OUT} = 150 mA	—	1.7	—	V
Average Temperature								
Coefficient of Output	тсуо	1	I _{OUT} = 5	mA	—	– 1.5		mV / °C
Voltage								

TA78L020AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 29 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C		19.2	20	20.8	V
Line Regulation	Pagulina	1	T 25°C	$23.5 V \leq V_{IN} \leq 35 V$		33	330	
Line Regulation	Regime	1	$T_{j} = 25 C$	$24 V \leq V_{IN} \leq 35 V$		28	285	
Load Population	Pagulaad	1	T 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$		33	180	
Load Regulation	Regnoad	I	$T_{j} = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		17	90	
				$23.5 V \leq V_{\text{IN}} \leq 35 V,$	10.0		21.0	
Output Voltage	VOUT	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	19.0		21.0	V
				$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{mA}$	19.0	—	21.0	
Quieccent Current		1	$T_j = 25^{\circ}C$			3.3	6.5	~~~
Quiescent Current	чВ	I	T _j = 125°0		—	6.0		
Quiescent	415	1	T 25°C	$24 V \leq V_{IN} \leq 35 V$		—	1.5	~^^
Current Change	⊔ ⊐'B	1	$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$		—	0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	C, 10 Hz \leq f \leq 100 kHz	-	170	—	μV_{rms}
Long Term Stability	⊿V _{OUT} / ⊿t	1		—		49	—	mV /kh
Pipple Paiastian	DD	2	f = 120 H	Z,	21	27		40
Ripple Rejection	n.n.	5	$25 V \leq V_{ }$	$_{\sf N}$ \leq 35 V, T _j = 25°C	51	57		
Dropout Voltage	VD	1	T _j = 25°C,	T _j = 25°C, I _{OUT} = 150 mA		1.7	_	V V
Average Temperature								
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	—	– 1.7	—	mV / °C	
Voltage								

TA78L024AP ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = 33 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT		TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	T _j = 25°C		23	24	25	V	
Line Regulation	Pogulino	1	T 25°C	$27.5 V \leq V_{IN} \leq 38 V$	—	35	350	m\/	
Line Regulation	Regime		$r_j = 25 C$	$28 V \leq V_{IN} \leq 38 V$	—	30	300		
Land Regulation	Decileed	1	τ. Σ Γ°C	$1.0 \text{ mA} \leq I_{OUT} \leq 100 \text{ mA}$	—	40	200		
Load Regulation	Regiload		$T_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	_	20	100		
				$27.5 V \leq V_{IN} \leq 38 V$,	22.8		25.2		
Output Voltage	Vout	1	T _j = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	22.0		25.2	V	
				$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{mA}$	22.8	—	25.2		
Quieccent Current		1	$T_j = 25^{\circ}C$		—	3.5	6.5		
Quiescent Current	чВ		T _j = 125°0	—	—	6.0			
Quiescent	415	1	T 25°C	$28 V \leq V_{IN} \leq 38 V$	—	—	1.5		
Current Change	ЪВ		$r_j = 25 C$	$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$	—	—	0.1	0.1 ^{MA}	
Output Noise Voltage	V _{NO}	2	Ta = 25°C	:, 10 Hz \le f \le 100 kHz	—	200	—	μV_{rms}	
Long Term Stability	∆V _{OUT} / ∆t	1		—	—	56	—	mV /kh	
Rippla Rejection	DD	2	f = 120 H	Ζ,	21	25		40	
Ripple Rejection	N.N.	5	$29V \le V_{ }$	$_{\sf N}$ \leq 39 V, T $_{\sf j}$ = 25°C	51	55			
Dropout Voltage	VD	1	T _j = 25°C,	$T_j = 25^{\circ}C, I_{OUT} = 150 \text{ mA}$		1.7	_	V	
Average Temperature									
Coefficient of Output	тсуо	1	$I_{OUT} = 5$	—	- 2.0	—	mV/°C		
Voltage									

TEST CIRCUIT 1/STANDARD APPLICATION

TEST CIRCUIT 2 V_{NO}

TEST CIRCUIT 3 R.R.

Precautions for Use

If high voltage in excess of output voltage (TYP. value) of IC is applied to its output terminal, IC may be destroyed. In this case, connect a Zener diode between the output terminal and GND to prevent application of excessive voltage. In particular, in such a current boosting circuit as shown in Application Circuit Example (2), if input voltage is suddenly applied by stages and furthermore, load is light, excessive voltage may be applied transiently to the output terminal of IC. In such a case as this, it may become necessary to increase capacity of output capacitor as appropriate, use a smaller R₁ (a resistor for bypassing IC bias current) or gradually rise input voltage in addition to use of a Zener diode as mentioned above.

APPLICATION CIRCUIT

(2) A. CURRENT BOOST VOLTAGE REGULATOR

B. SHORT-CIRCUIT PROTECTION

When surge voltage is applied to IC output terminal or $V_{IN} < V_{OUT}$ at the time of power ON/OFF, always connect the high speed swithing diode D₁. R_{SD} : Power limiting resistor If Vivi is too high, always connect Res. in order to reduce

If $V_{\mbox{IN}}$ is too high, always connect $R_{\mbox{SD}}$ in order to reduce power consumption of IC.

Use a required rediation plate for Q_1 .

$$R_1 \leq \frac{V_{BE1}}{I_B MAX}$$

D₁ : IC protective diode

where, V_{BE1} : V_{BE} of external transistor Q₁. I_B MAX : Max. bias current of IC.

(3) CURRENT REGULATOR

$$I_{OUT} = \frac{V_{OUT}}{R} + I_B$$

(4) VOLTAGE BOOST REGULATOR

 $V_{OUT} = V_Z + V_{OUT}$ (of IC) A little of current in resistor R is needed.

(5) NEGATIVE REGULATOR

(6) POSITIVE AND NEGATIVE REGULATOR

PACKAGE DIMENSIONS P-SSIP3-1.27

> 0.75MAX 1.0MAX 0.60MAX 0.60MAX 0.60MAX 0.60MAX 1.27 1.27 1.27 1.27 1.27

Weight : 0.36g (Typ.)

Unit : mm

<u>TOSHIBA</u>

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4017BP, TC4017BF

1

TC4017BP / TC4017BF DECADE COUNTER / DIVIDER

TC4017BP/BF is decimal Johnson counter consisting of 5 stage D-type flip-flop equipped with the decoder to convert the output to decimal.

Depending on the number of count pulses fed to CLOCK or CLOCK INHIBIT one output among 10 output lines "Q0" through "Q9" becomes "H" level.

The counter advances its state at rising edge of CLOCK (CLOCK IHIBIT="L") or falling edge of CLOCK INHIBIT (CLOCK="H"). RESET input to "H" level resets the counter to Q0="H" and Q1 through Q9="L" regardless of CLOCK and CLOCK INHIBIT.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V _{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	I _{IN}	± 10	mA
Power Dissipation	P _D	300 (DIP) / 180 (SOIC)	mW
Operating Ambient Temperature Range	T _{opr}	- 40~85	°C
Storage Temperature Range	T _{stg}	- 65~150	°C

LOGIC DIAGRAM

TRUTH TABLE

	INPUTS	SELECTED								
CLOCK	CLOCK INHIBIT∆	RESET	OUTPUT							
*	*	Н	Q0							
*	ж н		Qn (NC)							
L	*	L	Qn (NC)							
	L	L	Qn + 1							
	L	L	Qn (NC)							
н		L	Qn (NC)							
н	┍╺┙	L	Qn + 1							
△ ; Lev ※ ; Do NC ; No CAI	$ \begin{array}{c c} & & & \\ $									

<u>TOSHIBA</u>

TIMING CHART

RECOMMENDED OPERATING CONDITIONS (VSS = 0V)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}		3	—	18	V
Input Voltage	VIN		0	_	V_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS ($V_{SS} = 0V$)

CHARACTERISTIC	SYM-		Vaa	-40°C		25°C			85°C		
CHARACTERISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	MAX.	
High Loval			5	4.95	—	4.95	5.00	—	4.95	—	
Output Voltage	V _{OH}	$ 100T < 1\mu$	10	9.95	—	9.95	10.00	—	9.95		
		$\mathbf{v}_{\rm IN} = \mathbf{v}_{\rm SS}, \ \mathbf{v}_{\rm DD}$	15	14.95	—	14.95	15.00	—	14.95	_	
Low-Level Output Voltage		5	_	0.05	_	0.00	0.05	_	0.05		
	V _{OL}	$ \Gamma_{OUT} < \Gamma \mu A$	10	_	0.05	—	0.00	0.05	-	0.05	
		$\mathbf{v}_{\rm IN} = \mathbf{v}_{\rm SS}, \ \mathbf{v}_{\rm DD}$	15	_	0.05	—	0.00	0.05	—	0.05	

STATIC ELECTRICAL CHARACTERISTICS ($V_{SS} = 0V$ **)**

СПУВУ	HARACTERISTIC SYM-				– 40°C			25°C		85°C		
	CIERISIIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	MAX.	UNIT
			V _{OH} = 4.6V	5	- 0.61	_	- 0.51	- 1.0	_	- 0.42	_	
Output	⊔iah		V _{OH} = 2.5V	5	- 2.50	_	- 2.10	- 4.0	—	– 1.70	—	
Curront	ingn	I _{он}	V _{OH} = 9.5V	10	- 1.50	—	– 1.30	- 2.2	—	- 1.10	—	
Current			V _{OH} = 13.5V	15	- 4.00	—	- 3.40	- 9.0	—	- 2.80	—	
			$V_{IN} = V_{SS}, V_{DD}$									mΔ
			$V_{OL} = 0.4V$	5	0.61	—	0.51	1.5	_	0.42	—	
Output	Low	I	$V_{OL} = 0.5V$	10	1.50	—	1.30	3.8	—	1.10	—	
Current			V _{OL} = 1.5V	15	4.00	—	3.40	15.0	—	2.80	—	
			$V_{IN} = V_{SS}, V_{DD}$									
			$V_{OUT} = 0.5V, 4.5V$	5	3.5	_	3.5	2.75	_	3.5	_	
Input Hi	gh		V _{OUT} = 1.0V, 9.0V	10	7.0	—	7.0	5.50	—	7.0	—	
Voltage		∨ IH	V _{OUT} = 1.5V, 13.5V	15	11.0	_	11.0	8.25	—	11.0	—	
			I _{OUT} <1µA									v
			$V_{OUT} = 0.5V, 4.5V$	5	—	1.5	—	2.25	1.5	—	1.5	v
Input Lo	w	V	V _{OUT} = 1.0V, 9.0V	10	—	3.0	—	4.50	3.0	—	3.0	
Voltage			V _{OUT} = 1.5V, 13.5V	15	—	4.0	—	6.75	4.0	—	4.0	
			Ι _{Ουτ} <1μΑ									
Input	"H" Level	I _{IH}	V _{IH} = 18V	18	_	0.1	_	10 ⁻⁵	0.1	—	1.0	
Current	"L" Level	I _{IL}	$V_{IL} = 0V$	18		- 0.1		– 10 ⁻⁵	- 0.1	_	- 1.0	μΑ
Quiecer	t Supply			5		5	_	0.005	5		150	
Current	it Supply	I _{DD}	$V_{IN} = V_{SS}, V_{DD} *$	10	—	10	—	0.010	10	—	300	μΑ
Current				15	_	15	—	0.015	20	—	600	

* All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25° C, Vss = 0V, C_L = 50_{P} F)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	—	80 50	200	
(Low to High)	τ _{τιΗ}		10	_	50 40	80	nc
Output Transition Time			5	_	80	200	
(High to Low)	t _{THL}		10	—	50	100	
(High to Low)			15	_	40	80	

TOSHIBA

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time	t _{pLH}		5	_	325	650	
(CLOCK - Qn)	t _{pHL}		15		85	170	
			5		280	600	1
Propagation Delay Time	t _{pLH}		10	_	110	250	ns
(CLOCK - CARRY OUT)	τ _{pHL}		15	_	75	160	
Propagation Delay Time			5	_	265	530	1
(RESET - Qn)	ւ _{pLH}		10	—	115	230	
RESET - CARRY OUT /	℃ pHL		15	—	85	170	
			5	2.5	6.0	_	
Max. Clock Frequency	f _{CL}		10	5.0	12.0	—	MHz
			15	6.7	13.5	—	
			5	—	85	200	
Min. Clock Pulse Width	t _w		10	—	40	90	
			15		35	60	ns
Min Pulse Width			5	—	50	260	
(RESET)	t _{WH}		10	—	20	110	
(((1)))			15		15	60	
Max Clock Rise Time	+		5				
Max. Clock Fall Time	t _{rCL}		10		No Limit		μs
	L fCL		15			-	
Min Sot un Timo			5	_	30	230	
	t _{s∪}		10	—	15	100	ns
(CLOCK INHIBIT - CLOCK)			15	—	10	70	
Min Romoval Time			5	_	- 55	400	
	t _{rem}		10	_	– 20	275	ns
			15		– 15	150	
Input Capacitance	C _{IN}			_	5	7.5	pF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vss = 0V, $C_L = 50_PF$)

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

DIP 16PIN PACKAGE DIMENSIONS (DIP16-P-300-2.54A)

Unit in mm

SOP 16PIN (200mil BODY) PACKAGE DIMENSIONS (SOP16-P-300-1.27)

RESTRICTIONS ON PRODUCT USE

000707EBA

● TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TD62501P,TD62501F,TD62502P,TD62502F,TD62503P,TD62503F,TD62504P TD62504F,TD62505P,TD62505F,TD62506P,TD62506F,TD62507P,TD62507F

7CH SINGLE DRIVER

TD62501.	502.	503.	504P	/ F	:	COMMON EMITTER
	· · · - ,	,	00-11			

TD62505, 506P / F

TD62507P / F

: COMMON COLLECTOR : ISOLATED

The TD62501P / F Series are comprised of seven or five NPN Transistor Arrays.

For proper operation, the substrate (SUB) must be connected to the most negative voltage.

Applications include relay, hammer, Lamp and display (LED) drivers.

FEATURES

- Output Current (Single Output) 200 mA MAX.
- High Sustaining Voltage Output 35 V MIN.
- Inputs Compatible with Various Types of Logic.
- TD62501P / F, TD62505P / F and TD62507P / F: Using external resistor…General Purpose
- TD62502P / F
 - : RIN = 10.5 k Ω + 7V Zener Diode…14~25 V P–MOS
- TD62503P / F, TD62506P / F
 : R_{IN} = 2.7 kΩ···TTL, 5 V C-MOS
- TD62504P / F, $: R_{IN} = 10.5 \text{ k}\Omega \cdots 6 \sim 15 \text{ V P-MOS}$, C-MOS
- Package Type-P : DIP-16 pin
- Package Type-F : SOP-16 pin

Weight DIP16-P-300-2.54A : 1.11 g (Typ.) SOP16-P-225-1.27 : 0.16 g (Typ.)

PIN CONNECTION (Top view)

TD62505P / F, TD62506P / F

SCHEMATICS (Each driver)

 $\label{eq:tdef} TD62503P \mbox{/} F \quad R1 = 2.7 \mbox{ k}\Omega, \mbox{ TD62504P \mbox{/} F } \quad R1 = 10.5 \mbox{ k}\Omega$

*: Parasitic Diodes
SCHEMATICS (Each driver)

TD62505P / F

TD62506P / F

TD62507P / F

*: Parasitic Diodes

Note: The input and output parasitic diodes cannot be used as clamp diodes.

MAXIMUM RATINGS (Ta = 25°C Unless otherwise noted)

CHARACTERIST	SYMBOL	RATING	UNIT		
Collector-Emitter Voltage		V _{CEO}	35	V	
Collector-Base Voltage		V _{CBO}	50	V	
Collector Current		I _C 200		mA / ch	
	V _{IN} (Note 1)	-0.5~45	N		
input voitage	V _{IN} (Note 2)	-0.5~30	V		
Input Current	I _{IN} (Note 3)	25	mA		
Isolation Voltage	V _{SUB}	35	V		
P		Do	1.0	\A/	
	F	- FD	0.625 (Note 4)		
Operating Temperature	T _{opr}	-40~85	°C		
Storage Temperature	T _{stg}	-55~150	°C		

Note 1: TD62506P / F Note 2: TD62502P / F, TD62503P / F, TD62504P / F Note 3: TD62501P / F, TD62505P / F, TD62507P / F Note 4: On Glass Epoxy PCB (30 × 30 × 1.6 mm, Cu 50%)

RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C)

CHARACTERISTIC		SYMBOL	CONDITION	MIN	TYP.	MAX	UNIT
Collector-Emitter Voltage		V _{CEO}		0	_	35	V
Collector-Base Vo	Itage	V _{CBO}		0	_	50	V
Collector Current		Ι _C		0		150	mA / ch
	TD62506P / F			0	_	35	V
Input Voltage	TD62502P / F	V _{IN}				25	
	TD62503P / F			0	_		
	TD62504P / F						
	TD62501P / F			0		10	mA
Input Current	TD62505P / F	I _{IN}					
	TD62507P / F						
Power Dissipation	Р	Po		—	_	0.360	\ \ /
	F	۳D	On PCB (Note)		_	0.325	vv

Note: 30 × 30 × 1.6 mm, Cu 50%

ELECTRICAL CHARACTERISTICS (Ta = 25°C Unless otherwise noted)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Leakage Curren	nt	ICEX	1	V _{CE} = 25 V, V _{IN} = 0	_	—	10	μA
				I _{IN} = 1 mA, I _C = 10 mA		—	0.2	
Collector-Emitter Saturation Voltage		V _{CE (sat)}	2	l _{IN} = 3 mA, l _C = 150 mA	_	_	0.8	V
				(Note 1)				
DCCurrent Transfer	(Note 2)	bee	2	$V_{0T} = 10 V I_0 = 10 mA$	70	—	-	
Ratio	(Note 3)	UFE		VCE - 10 V, IC - 10 IIIA	50	—		
	TD62502P / F		3	I _{IN} = 1 mA I _C = 10 mA	13	17	23	
Input Voltage	TD62503P / F	V _{IN (ON)}			2.4	3.4	4.2	V
	TD62504P / F			0	7.5	11.5	15	
Turn-On Delay		t _{ON}	4	V _{OUT} = 35 V, R _L = 3.3 kΩ	_	50	_	ne
Turn-Off Delay		tOFF	4	C _L = 15 pF		200	_	115

Note 1: Except TD62502P / F Only

Note 2: Only TD62501P / F, TD62505P / F, TD62506P / F, TD62507P / F

Note 3: Only TD62502P / F, TD62503P / F, TD62504P / F

TEST CIRCUIT

1. ICEX

2. hFE, VCE (sat)

3. VIN (ON)

4. ton, toff

Note 1: Pulse Width 50 μ s, Duty Cycle 10% Output Impedance 50 Ω , t_r ≤ 5 ns, t_f ≤ 10 ns Note 2: See below

INPUT CONDITION

TYPE NUMBER	RJ	VIH
TD62501P / F	2.7 kΩ	3 V
TD62502P / F	0 Ω	15 V
TD62503P / F	0 Ω	3 V
TD62504P / F	0 Ω	10 V
TD62505P / F	2.7 kΩ	3 V
TD62506P / F	0 Ω	3 V
TD62507P / F	2.7 kΩ	3 V

Note 3: $C_{\mbox{L}}$ includes probe and jig capacitance

PRECAUTIONS for USING

This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.

Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.

Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

DIP16-P-300-2.54A

Weight: 1.11 g (Typ.)

Unit: mm

PACKAGE DIMENSIONS

SOP16-P-225-1.27

Weight: 0.16 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

μPC575C2

2.0W音声電力增幅回路/2.0WAF Power Amplifier

特徵

μPC575C2 は、電源電圧13.2V、8Ωスピーカを標準とした出力電力2.0Wの高利得、低雑音の音声電力増幅用半導体集積回路です。

カーラジオ、小型ステレオ・プレーヤーなどの音声電力増幅用として最適です。

外形は実装作業性のよい、8ピンTAB 付プラスチック DIP です。

Feature

The μ PC575C2 is an integrated circuit designed for high power and low noise audio power amplifier (2.0W at 8 Ω 13.2V) applications, and suitable for use in car radio sets and small stereo sets. The μ PC575C2 is encapsulated in 8 pin Dual In-Line Plastic package with tab.

等価回路/Equivalent Circuit

外形図/Package Dimensions(Unit:mm)

16	- <u></u>	略	号	定	格	単	位
	ы 	Vcci			20		V
電源電圧(無信亏呀)		Vag			17		v
電源電圧(動作時)		T			1		A
回路電流		100(1	peak)		1 0		w
バッケージ許容損失		P _D *					°C
動作温度範囲		Top	t	-20/	~+ />		~
		T _{stg}		-40	\sim +150		

絶対最大定格/Absolute Maximum Ratings (Ta=25°C)

* プリント銅箔基板30mm×30mm 使用

電気的特性/Electrical Characteristics ($T_a=25^{\circ}C$, $V_{CC}=13.2V$, f=1kHz, RL=8 Ω)

			A	<i>(</i> /+	MIN	TYP.	MAX.	単 位
項	目	略号		1+		10	16	
		Icc	$V_i = 0$		8	12	10	11177
			T H D = 10%		1.5	2.0		W
出力電力		10	D 0 511			0.5	1.5	%
ひずみ率		T.H.D.	$P_0 = 0.5W$			*	EG	AB
金工利得		A,	$P_0 = 0.5W$		51		00	ub
电压机时			$\mathbf{R}_{\mathbf{r}} = 0.0$		i	0.4	0.8	mV
- 雑音出力		v_n	rG-077			1		

* 電圧利得 A, については 3 dB 幅で分類可能です。

