HALLICRAFTERS PAGE 17 Symptom # MODEL SP-44 THE HALLICRAFTERS CO. Skyrider Panor amic ### TROUBLE SHOOTING CHART. Symptom Causes and Cures 4. Test PANADAPTOR for center deflection with a signal generator set at 455KC (ar I.F. of receiver) to the input (disconnected from receiver). 5. Increase SWEEPWIDTH control to maximum sweep. Causes and Cures 2. INTENSITY and FOCUS controls out of adjustment. a new collections who is No illumination of the cathode ray tube, V8. a. See if tubes are lit. b. Fuse inside chassis burned out. c. Check ON-OFF switch. | | Defective cathode ray tube, or
rectifiers V9, V10. | | to maximum sweep. | |---|---|--|--| | • | Defective high voltage power supply. | 7. Whole baseline moves | 1. F.M. sweep is not operating, and
set behaves as though the | | | Tubes not seated properly in sockets. | ceiver is tuned. | SWEEPWIDTH control is set at
zero. Check V5. | | | Shorted filter condensers C17,
C18. | | Use an oscilloscope to check sewtooth at pin #4 of V5. | | | 7. Open resistors R16, R34. | | Strong local stations coming
through the receiver and beating
against one another in the input | | . Baseline trace cannot | 1. AC power input below 115V. | | stages of the PANADAPTOR
to produce 226KC. Remedy would | | be made sharp and
bright. | Check high voltage power supply
(V10). | | be to align receiver or install
wave traps. | | | 3. Defective cathode ray tube. | | | | | Check condition of INTENSITY
and FOCUS controls for possible
opens. | 8. Baseline remains at
top of the screen re- | I.F. amplifier may be oscillating
Change V3, V6.
Check C4, U28. | | | Check resistance of R16, R36,
R37 and R39. | gardless of tuning. | Compare V3 voltage against vol-
tage chart. | | | | | 2. Video amplifier V4 may be in- | | i. Baseline trace cannot
be made to coincide | Check high voltage power sup-
ply (V10). | | operative,
Change V4.
Compare V4 voltages against | | with screen baseline. | Check V4 if unable to get verti-
cal position. | | Voltage Chart. | | | 3. Check R31. | | 1. Check all tubes, Most likely to | | | Check the voltage on the cathode
ray tube deflection plates against
the voltages specified on the | Low gain, Able to
hear weak signals but
cannot see them on | be weak V3, V4. | | | Voltage Chart. | PANADAPTOR | Check voltages, especially screen
voltage of V3. | | |) Chd. 1/7 | | Misaligned I.F. transformers. Note: Do not attempt alignment | | 1. Stationary spot on the screen. | 2. Trace the sawtooth voltage with | • | until absolutely certain that | | | an oscilloscope from the blocking
oscillator V7 to V8. | | alignment is at fault. | | | 3. Check R18, R20. | Symptoms of misalign-
ment. | Do not attempt alignment until
the set has been thoroughly
checked for faults. Be sure that | | 5. Jumpy baseline or | 1. Sawtooth Generator is not syn- | a. Low gain. | the error limits, as given in the | | flickering images. | chronized to half the line fre-
quency. Change V7. Check the | b. "Pips" too wide. | specifications, for the PAN-
ADAPTOR, are exceeded before | | | values of the resistors and con-
densers R18, R19, R20, R21, C20,
C21. | c. The double peaked
response of the
band pess amplifier
is not peaked at | concluding that alignment is
necessary. | | ı | Feed the AC voltage from pin No. of "V4" through a 500 mmf condenser to pin No. 2 of the same | points 10KC from
each end of the
scale. | | | | tube, Adjust syncronization poten-
tiometer under the chassis until
two stationary peaks appear on | d. Frequency range of
signals on the screen | • | | | the screen, when the adjustment
is completed, remove the AC volt-
age from pin No. 2. | is other than 200KC at maximum sweep-
width. | | | | | Range of the CEN-
TER FREQ. control
is less than 200KC. | | | 6. No signals. | 1. Check connection to receiver. | | | | | Turn up GAIN control. Check operation of the receiver. | Pip generated by an
unmodulated signal
is non-symmetrical. | | ### VOLTAGE CHART. Voltmeter 1,000 ohms per volt. Line voltage 115V | Circuit
Symbol Ty | r | | PIN NUMBER | | | | | | | | | | | |----------------------|--------|-----------------------|------------------|------|-------|------|-------|-----|-------|-------|-----|------|----| | | Туре | Fu action | 1 | 2 | 3 | 4 | 5 | .6, | 7 | 8 | 9 | 10 | 11 | | V1 | 6SG7 | R. F. Amplifier | 0 | 0 | 17 | 0 | 17 | 115 | 6.3AC | 380 | | | | | V2 | 6SA7 | Converter | | 0 | 380 | 105 | 0 | 0 | 6.3AC | -1.3 | | | | | V3 | 6SG7 | I. F. Amplifier | | ō | 2.4 | 0 | 2.4 | 115 | 6.3AC | 380 | | | | | V4 | 6507 | Det. Video Amp | Ó | . 0 | 0 | ō i | 0 | 125 | 6.3AC | 0 | | | | | V5 | 6AC7 | Reactor | | Ò | Ò | ō | 3.3 | 105 | 6.3AC | 360 | | | | | V6 . | VR105 | Voltage Reg | | | 380 | | 105 | | 380 | | 1 | | | | V7 | 6SN7 | Sawtooth Gen, and Am- | | , | | | | | | | 1 | | | | | | plifier | 0 | 60 | 5 | -0.2 | 3 | 0 | 6.3AC | 0 | 1 | | | | V8 | 2AP1-A | CRT Indicator | -420 | -420 | 140 | -100 | ٔ ہ ا | SL | 160 | 175 | 155 | -490 | | | V9 | 6 x 5 | L. V. Rectifier | l. , | | 325AC | | 325AC | | 6.3AC | 390 | 1 | 1 | 1 | | V10 | 6 x 5 | H. V. Rectifier | | | | | | | 6.3AC | 325AC | | | 1 | Notes:-GAIN at minimum, SWEEPWIDTH at maximum, all other controls at normal position. SL indicates slight movement. ### VOLTAGE CHART. Voltmeter 25,000 ohms per volt. Line voltage 115V. | Circuit
Symbol | Туре | Function | PIN NUMBER | | | | | | | | | | | |-------------------|--------|-----------------------|------------|-----------|-------|------|-------|------|-------|-------|-----|------|-----| | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | V1 | 6SG7 | R. F. Amplifier | 0 | 0 | 20 | . 0 | 20 | 120 | 6.3AC | 380 | | | | | V2 | 6SA7 | Converter | | Ó | 380 | 105 | 0 | 0 | 6.3AC | -3.0 | | | | | V3 | 6SG? | I. F. Amplifier | 0 | 0 | 2.7 | 0 | 2.7 | 120 | 6.3AC | 380 | | | | | V4 | 6SQ7 | Det. Video Amp | Ö | . 0 | 0 | o | 0 | 150 | 6.3AC | 0 | | | | | V5 | 6AC7 | Reactor | Ō | 0 | 0 | Ö | 3.4 | 105 | 6.3AC | 360 | | | | | V6 | VR105 | Voitage Reg. | | l <i></i> | 380 | | 105 | l | 380 | | | | | | V7 | 6SN7 | Sawtooth Gen, and Am- | | l | ĺ | | | 1 | | | | | | | | l i | plifier | 0 | 150 | 8.2 | ~7.3 | 50 | 0 | 6.3AC | 0 | | | | | V8 | 2APt-A | CRT Indicator | 600 | -600 | 165 | -380 | 0 | 115* | 185 | 250 | 185 | -650 | 600 | | V9 | 6 x 5 | L. V. Rectifier | | | 325AC | | 325AC | l | 6.3AC | 390 | | | | | V10 | 6 x 5 | H. V. Rectifier | | | | | | | | 325AC | | | | Notes:—GAIN at minimum, SWEEPWIDTH at maximum, all other controls at normal position. *Voltage reading varies according to scale used. ### RESISTANCE CHART. | Circuit Type | | Function | PIN NUMBER | | | | | | | | | | | |--------------|--------|-----------------------|------------|------|-----|---------|---------|--------|-----|------|---|---------|----| | Symbol | | | - 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1Ò | 11 | | Vı | 6SG7 | R. F. Amplifier | 0 | 0 | 200 | 20 | 200 | 40K | 0 | 50K | | | | | V2 | 6SA7 | Converter | 0 | 0 | 50K | 70K | 20K | 5 | 0 | 15K | | | | | V3 | 6SG7 | l. F. Amplifier | 0 | 0 | 500 | 1 Meg. | 500 | 40K | 0 | 50K | | | | | V4 | 6SO7 | Det. Video Amp | 0 | 500K | 0 | 1 | 500K | 250K | 0 | 0 | | | | | V5 | 6AC7 | Reactor | | 0 | 0 | 300K | 1K | 70K | 0 | 53K | | [| | | V6 | VR 105 | Voltage Reg | | Ó | 50K | | 70K | | 50K | | | | | | V7 | 6SN7 | Sawtooth Gen. and Am- | | | | i | | | | | | | | | | 11.1 | plifier | 2 Meg. | 550K | 20K | 1.3Meg. | 3.5Meg. | 0 | 0 | l e | | | | | V8 | 2AP1-A | CRT Indicator | | | | 1.5Meg. | | 3 Meg. | 75K | 150K | | 2.5Meg. | | | V9 | 6 x 5 | L, V. Rectifier | | 0 | | 2.5Meg. | | | 0 | 50K | | | | | V10 | 6 x 5 | H. V. Rectifier | | 0 | | 3 Meg. | 3 Meg. | | 0 | 250 | | | | Notes:—GAIN and SWEEPWIDTH at maximum, all other controls at normal position. K=1,000 ohms, Meg. = megohms, all other resistances are in ohms. ### DeWald 418 This model is the same as model 414 appearing on page 11-2 of Rider's Volume XI. ### Electronic Laboratories 2811 This model, shown on page 16-8 of Rider's Volume XVI, uses the Webster model 56 record changer, which is shown on page RCD.CH.15-10 of Rider's Volume XV. ### Emerson BF-169, BF-204, And BF-207 These models are the same as Model BF-191 appearing on pages 9-1 and 9-2 of Rider's Volume IX. ### Emerson 567, Chassis 120016 This model is the same as Model 560, Chassis 120016, appearing on pages 17-30 to 17-30 of Rider's Volume XVII. # FM Specialties Model Fidelotuner This model is shown on pages 17-1 to 17-4 of Rider's Volume XVII. Three terminals are shown in Fig. 5, page 17-4; the first labelled 3, and the third terminal (not labelled in this figure) should be labelled 4. The ground from the phonograph connection to the receiver should be made to this third terminal (terminal 4). # Farnsworth AC-55, Chassis C2-3 This model is the same as model ACL-55, Chassis C 2-3, shown on pages 11-7 and 11-10 in Rider's Volume XI. # Fornsworth ACL 55, ACL56, AKL58, AKL 59 These models shown on pages 11-7 and 11-10 of Rider's Volume XI are erroneously listed as ATL. ### Farnsworth GK-140 Slippage of the dial-drive cable on the early production sets can be corrected by replacing the cable with part number 05096. This cord is softer and smaller than the one used previously. If the push buttons bind on the front panel of the cabinet, the ganged capacitor may not be properly positioned. This may be corrected by installing a flat metal washer under each of the mounting grommets. This may be done without removing the gang from the chassis. Oscillation or low sensitivity on f.m. may be due to poor ground connections from the gang to the r-f shelf. When aligning the f-m band, oscillation may occur with certain signal generators. Changing the value of the resistor in series between the generator and the chassis will prevent oscillation. With some generators more than 400 ohms are required, with others less. In some preliminary sets a 200-µµf capacitor was placed in series with the short-wave converter-trimmer. If for any reason this trimmer requires replacement, removal of the capacitor is suggested. This capacitor is not shown on the schematic. In some of the preliminary 14-tube sets, Belden braid was used to ground the ganged capacitor to the r-f shelf. In certain instances too much solder flowed into the braid and as a result some joints break loose or the set becomes microphonic. This braid should be replaced with soft copper strips. # General Electric A51, A56 These models are the same as model A54 shown on pages 7-4 to 7-6 of Rider's Volume VII. ### General Electric H639AC-DC The r-f alignment instructions of these models found on page 11-80 of Rider's Volume XI, should read as follows: With gang condenser plates completely meshed, set dial to the first mark at the left end of scale. Then set dial to 1500 kc. Apply a 1500-kc signal either through a standard I.R.E. dummy to the antenna terminal or through an additional loop connected to the generator output which can be magnetically coupled to the receiver Beama-Scope. Align C2 and C1 at 1500 kc for maximum output. Set dial to 580 ke and peak C3 on 580 kc while rocking the gang condenser. Retrim at 1500 kc. ### GE YRB 60-12 This receiver is the same electrically as the YRB 60-2 appearing on page 15-5 of Rider's Volume XV but the cabinet is different. ### GE YRB 92-2 and 81-3 These models are the same electrically as the YRB 82-1 appearing on pages 15-53 to 15-54 of Rider's Volume XV, but they have different cabinets. ### General Electric L604 This model is the same as Model L600 appearing on page 13-40 of Rider's Volume XIII. ### General Electric 202 This receiver is the same electrically as the model 200 as shown on pages 15-54 to 15-56 in Rider's Volume XV, except that it has a different cabinet. ### General Electric 219, 220, 221 A few cases of hum which cannot be reduced in the normal manner from these models shown on pages 15-28 to 15-31 of Rider's Volume XV, may be corrected by cathode degeneration in the output tube, 35L6GT/G, cathode circuit. Remove R17 and C29-C from the circuit. This can be done by disconnecting one end of R17. ### General Electric 260 This model appears on pages 16-7 to 16-12 of Rider's Volume XVI. It has been found that late production 1LC6 tubes, coded H7E, will oscillate at another frequency in addition to the desired frequency, causing unsatisfactory operation. To remedy this condition, the oscillator grid capacitor, C17, should be changed from 100µµf to 56µµf. ### GE 254 This model is illustrated on pages 16-3 to 16-5 of Rider's Volume XVI. The suffix letters after 254 indicate only the cabinet styling. All versions are electrically identical. ### Firestone 7402-4 This model is the same as model S7426-6 shown on page 10-5 of Rider's Volume X. ### Firestone 7423-5 This model is the same as model S7402-5 shown on page 13-38 of Rider's Volume XIII. ### Goodrich R655W This model uses the Admiral recordchanger model RC161 or RC161A, which are to be found on Admiral RCD. CH. pages 17-1 to 17-7 of Volume XVII. ### Hallicrafters S-40A This model is the same as Model S-40, second revision, on pages 15-67 to 15-86 of Rider's Volume XV, except for the following changes. C18 has been changed in value from 100μμf to 68μμf. A 10-ohm resistor (R30) has been connected between the center tap of oscillator coil T10 and terminal C. R30 has been removed from its previous position between C16 and the junction of C26, C6C, C7C, and switch S1F. C55 has been changed in value from 100µµf to 47μμf, and is now connected to the top of the 470-µµf capacitor (C54). The coil T17 is connected directly across C54, with one end going to ground. The center tap of this coil is connected to the cathode of the 6J8 tube. The 0.01-µf capacitor (C53) is connected from the plate of the 6J8 tube directly to ground. The parts list should be changed to read as follows: Ref. Hallicrafter's No. Description Part No. C18 68μμf, ±10%, 500 vdcw; neg. temp. coeff. 0.0075μμf/μμf/deg.C; CC25UK680K ceramic C55 47μμf, ±20%, 500VDC, CM20A470M Mica T17 BF0 coil; 455 kc; 54B033-2 shielded ### Hallicrafters SP-44 AND SX-42 These models appear on pages 17-1 to 17-5 and 17-6 to 17-16 respectively of Rider's Volume XVII. When the SX-42 is used with the SP-44 Panadaptor on the low-frequency band, it appears to motor boat. To correct this condition, do the following. The connecting cable between the SP-44 and the SX-42 is shielded and the shield is connected to the SX-42 ground. Disconnect the shield from the SX-42 ground and place a 50-µµf capacitor between the shield and the SX-42 chassis. Be sure that the SX-42 chassis is well grounded. A shielded antenna lead, or a balanced antenna, on the SX-42 may also help. The following modifications should be made on the SP-44 unit. A strip of bonding braid, 3% inch wide, may REAR PANEL CONNECTIONS: Consists of a line cord with plug, phone jack for monitoring purposes, and R-F coupling cable to companion receiver. POWER SUPPLY DATA: 105-125 volts AC, 50-60 cycles, power drain is approximately 55 watts. TUBE TYPES AND FUNCTIONS: 6SG7 R-F amplifier, 6SA7 converter, 6SG7 I-F amplifier, 6SQ7 detector-video amplifier, 6AC7 reactor, VR-105 voltage regulator, 6SN7 saw tooth generator and amplifier, 2AP1 cathode ray tube, 6X5 low voltage rectifier, 6X5 high voltage rectifier. Skyrider Panoramic Model SP-44, view showing operating controls. MODEL SP-44 Skyrider Panoramic THE HALLICRAFTERS CO. # REPLACEMENT PARTS LIST FOR MODEL SP-44 PANORAMIC ADAPTOR | Ref. No. | Description | Hallicrafters
Part No. | Ref. No. | Des | scription | Hallicrafters
Part No. | |---|---|--|---|--|--|--| | | RESISTORS | | | CAPACITOR | 5, MICA | 1011110. | | R2
R8
R40
R10 | 200 ohm, ½ W.
500 ohm, ½ W.
1200 ohm, ½ W.
3000 ohm, ½ W. | RC20AE201J
RC20AE510J
RC20AE122J
RC20AE302J | C13
C7, 10, 14
C29
C8, 12, 15
C1 | 10 ouf
100 ouf
250 ouf
500 ouf
.001 mfd | (| M20A100J
M20A101M
M20A241J
M20A511J | | R26, 45
R25, 36
R49
R12, 13 | 5000 ohm, ½ W.
15,000 ohm, ½ W.
8200 ohm, ½ W.
18,000 ohm, ½ W., 10% | RC20AE512J
RC20AE153M
RC20AE822J
RC20AE183J | | CAPACITOR: | | CM25A102M | | R35
R11
R1, 4
R28, 29
R42 | 20,000 ohm, ½ W.
25,000 ohm, ½ W.
50,000 ohm, ½ W.
100,000 ohm, ½ W.
150,000 ohm, ½ W. | RC20AE203J
RC20AE273K
RC20AE513J
RC20AE104M
RC20AE154K | C3, 6, 9, 16, 28, 30, 21
C4, 23, 24, 25, 26
C20, 31
C17, 18 | .01 400 VDC
.05 400 VDC
.1 400 VDC
.1 800 VDC | | 46AW103H
46AW503H
46AV104E
46A081 | | R14
R16
R7, 9, 48, 39 and 24
R37
R27
R18 | 200,000 ohm, ½ W.
300,000 ohm, ½ W.
500,000 ohm, ½ W.
1. megohm, ½ W.
2. megohm, ½ W. | RC20AE2043
RC20AE3043
RC20AE5143
RC20AE105M
RC20AE205J
RC20AE275J | C22
C19, 27 | .25 600 VDC
20-20 MFD
450 VDC elec | trolytic | 46AV104H
45A117 | | R16
R33
R47
R46
R5
R17 | 2.7 megohm, ½ W.
3. megohm, ½ W.
150,000 ohm, 1 W.
100,000 ohm, 1 W.
75,000 ohm, 1 W.
15,000 ohm, 1 O.W.ww | RC20AE305J
RC35CE154J
RC35CE104J
RC35CE753J
24BG153E | L1
L2
T3
T4
T1, 2
Z2, 3 | Choke, RF Choke, power Sawtooth gen Power transforme If transforme Oscillator coil | fliter
erator transf.
rmer | 53A120
56B087
51B978
52C150
51B979
50C219
51B980 | | | POTENTIOMETERS | | 21 | OSCINIOTOT CON | • | 319980 | | R3
R15 | 10,000 ohms, W./sw
100,000 ohms | 258678
258679 | | MISCELLA | NEOUS | | | R12
R6
R30, 34
R22
R23, 38
R20 | 100,000 ohms, no slot
500,000 ohms, no slot
250,000 ohms
1. meg
1. meg., slotted
2. meg., slotted | 258677
258680
258682
258682
258683
258684
258681 | Fuseholder
Phone jack
Knob
Screen, CRT
Fuse, I amp.
Alligator clip | 6A287
36A040
15A058
22A190
39A321
76A375 | RF cable
Spring clip connecto
Octal socket
CRT socket
Line cord and plug | 87A960
or 76A376
6A035
6A288
87B1577 | a. ALIGNMENT PROCEDURE. — Allow the PANADAPTOR to reach operating temperature to assure stable operation. This may require 10-20 minutes. Adjust the screwdriver controls, INTENSITY and FOCUS, for optimum brightness and sharpness of the baseline trace. Note: Reduction of the intensity and proper adjustment of the Focus control produces a sharp baseline. Bring the baseline trace in coincidence with the lowest horizontal line on the screen by means of the VERTICAL POSITION Control. Adjust the HORIZONTAL POSITION Control so that the baseline is approximately centered along the horizontal axis. Determine whether the horizontal sweep is synchronized to half the line of frequency by introducing hum into the grid (pin \$2) of the 6SQ7 (use finger or screwdriver). A double hump should appear on the baseline if the circuit is operating correctly. If it does not, refer to the Troubleshooting Chart. The Panoramic screen is used as the alignment indicator. Signals should be kept below the saturation level by limiting the signal generator output voltage. continued Top View of Chassis. | Alignment of | Signal
Generator
Output | Position
of Controls | Procedure | |----------------------------|---|---|---| | I.F. Amplifier | 226KC unmodulated to pin #8 of V2. | SWEEPWIDTH at zero position. CENTER FREQ. turned extreme counter-clockwise. | Entire baseline deflects upward. Adjust the trimmers in the I.F. transformers (Z2-12, Z3-12) for maximum deflection. | | F.M. Oscillator | 455KC (or I.F. of
the receiver) unmod-
ulated to pin #8 of
V2. | SWEEPWIDTH at maximum. SWEEP PAD set half way. CENTER FREQ. at center or zero position. | A "pip" will appear on the screen. Adjust the trimmer in the oscillator transformer Z1-12, to bring "pip" to the center of the screen. Turn the SWEEPWIDTH control to almost zero for more accurate indications of proper trimmer adjustment Return the SWEEPWIDTH control to maximum and adjust the HORIZONTAL POSITION control so that the "pip" is directly over the zero mark on the screen. | | Linearity
of Sweep | 355KC-555KC (or I.F. of the receiver ±100KC) unmodulated to pin \$\$ of V2. | SWEEPWIDTH at maximum. CENTER FREQ. at center or zero position. | Set the signal generator for 555KC (or receiver I.F. +100KC) and bring the "pip" to the —100KC mark by means of the SWEEP PAD. Shift the signal generator frequency to 355KC (or receiver I.F.—100KC). The "pip" should be at the +100KC mark. If the linearity is incorrect, the deflections appear more than 10KC or ½ division from each end with 455KC or I.F. deflection in the center of the screen. Some correction is possible by trial and error adjustment of the oscillator trimmer (Z1-12) and the CENTER FREQ. control. If after the adjustment is made the CENTER FREQ. control knob is off center for a 455KC (or receiver 1.F.) deflection at the zero mark on the screen, unscrew and reset the knob to the center position. | | R.F. Bandpass
Amplifier | 365KC - 545KC (or
I.F. of receiver)
±90KC) unmodu- | Set GAIN to maximum. Turn EQUALIZER | Set the signal generator at 545KC (or receiver, I.F. +90). Back off the side side trimmers on both R.F. transformer (T.1.2, T.2.12), and align the top trim | fully clockwise. (T1-12, T2-12) and align the top trim- mers for maximum deflection. Shift signal generator to 365KC (or receiver I.F. -90) and tune the two side trimmers for maximum deflection. Repeat both ad- justments. The ratio of the peak to center heights (peak to valley) should be great- er than 20:1. lated to a 50K resis- DAPTOR. cable to the PANA- zero. tor in series with the Set CENTER full length of input FREQ. control to