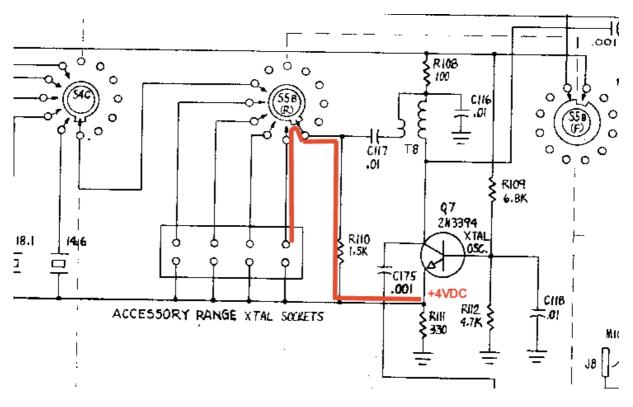
## FS-4 Wizard for Drake Synthesizer FS-4

The FS-4 is nice, but has some small disadvantages when operated with a C-line:

- 1. The FS-4 can be connected only to the R-4 or T-4 but not simultaneously to both.
- 2. "The FS-4 should be unplugged ... if operation is desired from internal crystal control because the cable capacity can cause oscillations in the receiver or transmitter" /1/.
- 3. Furthermore i observed that the level of the FS-4 at higher bands e.g. beyond 21MHz is lower than the internal crystal oscillator.

The FS-4 Wizard, consisting of


1. FS-4 Adapter

#### 2. Buffer Amplifier

solves these three problems.

*Note:* Some older versions of the R-4's and maybe also of the T-4's have a different wiring of the XTAL-oscillator. For more details see addendum.

# The Principle:



Picture 1: XTAL-oscillator in the T-4XC (applies also for R-4C)

When an accessory crystal is selected, the positve voltage (+4VDC) from the emitter of Q7 is also switched via R110 to this socket (picture 1). This voltage can be used as an "indication" for the new buffer in the FS-4 to operate when connected to this socket – see red line in pictures 1 and 4. For the PNP-transistors Q3 and Q4 (emitter at +12VDC) in the new buffer amplifier these +4VDC are effectively a voltage of -8VDC.

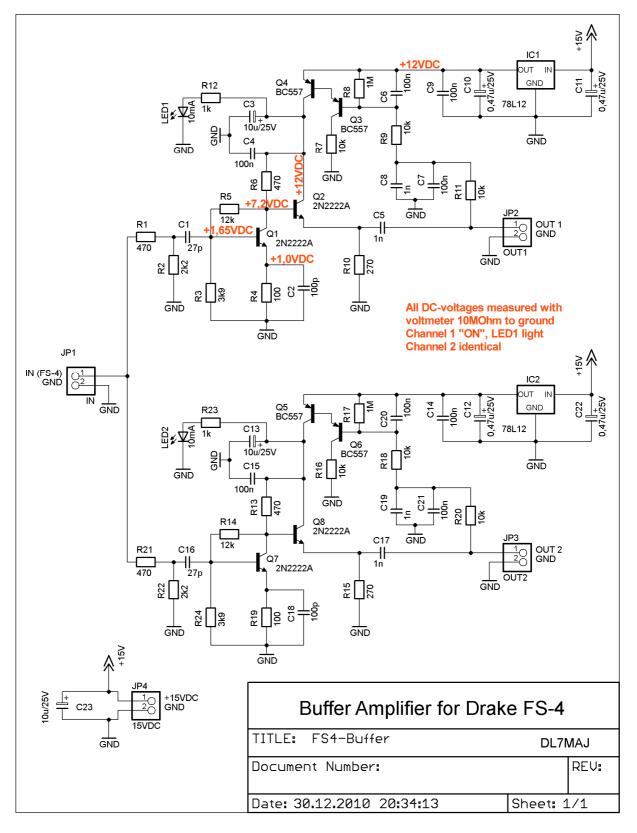
Therefore the "polarity" of the new adapter in the XTAL-socket has to be observed!

### The Circuit:

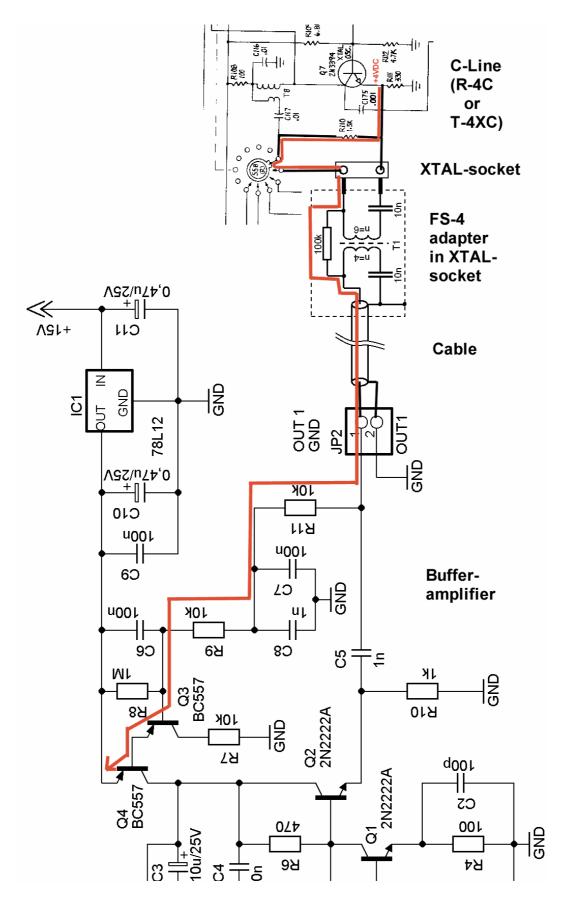
#### 1. The FS-4 Adapter

The FS-4-Adapter isolates the capacity of the coax cable from the crystal socket, so this adapter with the cable may be left plugged in even when the FS-4 is not used! Additionally it transfers the DC-voltage via the 100kOhm resistor from the emitter of Q7 to the FS-4 Buffer (picture 2). **OBSERVE POLARITY IN THE XTAL-SOCKET!** 

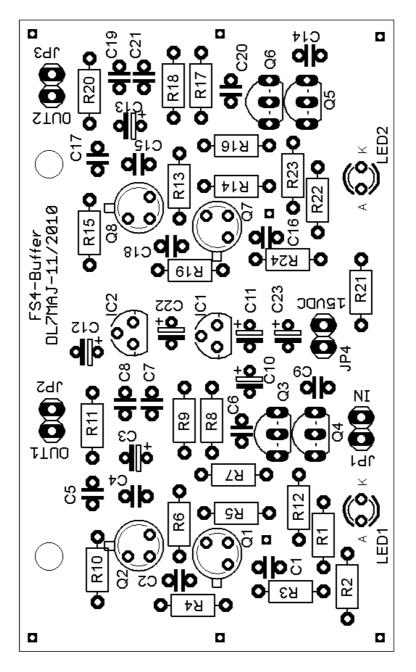



Picture 2: FS-4 Adapter

T1 is a step-up transformer to increase the voltage. Both windings are on the opposite side of the core to minimize the capacitive coupling between. Via the resistor (100kOhms) the DC-voltage is fed to the buffer; the two caps (one is SMD) isolate this DC against ground; see also picture 7. I used the case of an old crystal.


#### 2. The Buffer Amplifier

The buffer amplifier (picture 3) has two identical "channels"; the function is described for channel "1": The signal from the FS-4 (JP1) is separated by R1/R2 and R21/R22 from channel 2 and fed to amplifier Q1. C1 and C2 are dimensioned for more amplification at higher frequencies (see topic 3 above). Q2 is an emitter follower to get an low impedance output at JP2. Q3 and Q4 get conductive when the above mentioned DC-level is fed to the circuit via the FS4-adapter and R9/R11. LED1 indicates the "ON"-status of this output ; the complete DC-path is shown in picture 4. The 15VDC are taken directly from the FS-4 (see pictures 8 and 14) and stabilised by IC1.


Channel 2 (Q5/6/7/8) operates in the same way (picture 3).



Picture 3: Schematic of the buffer amplifier



Picture 4: DC-path from the emitter of Q7 (T-4XC) to the buffer amplifier (Q3/Q4)



Picture 5: Layout of the buffer amplifier (74mm x 44mm)

#### 3. Technical Data

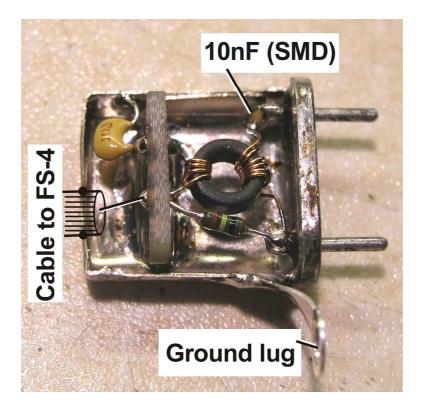
| Frequency:          | 11MHz to 41MHz                                     |  |
|---------------------|----------------------------------------------------|--|
| Gain:               | between JP1 and JP2 or JP3 (FS4-adapter connected) |  |
|                     | At 11MHz: app. 1,0 / at 41MHz: app. 1,2            |  |
| Supply Voltage      | >14VDC                                             |  |
| Current consumption | Both channels "ON" and both LEDs lighting: 95mA    |  |
|                     | One channel "ON" and one LED lighting: 50mA        |  |
|                     | Both channels "OFF" and no LEDs lighting: 5mA      |  |
| Dimension:          | 74mm x 44mm                                        |  |



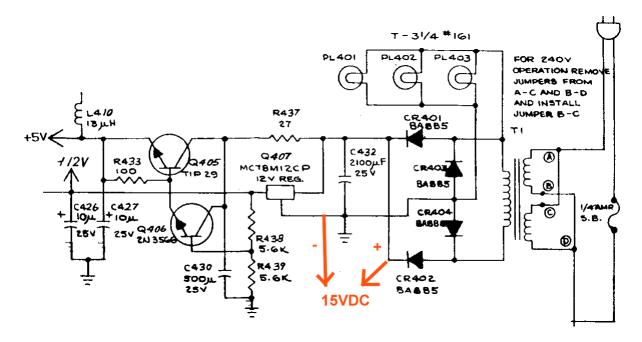
Picture 6: PCB

| Part           | Value     |
|----------------|-----------|
|                |           |
| C1             | 27p       |
| C2             | 100p      |
| C2<br>C3<br>C4 | 10u/25V   |
| C4             | 100n      |
| C5             | 1n        |
| C6             | 100n      |
| C7             | 100n      |
| C8             | 1n        |
| C9             | 100n      |
| C10            | 0,47u/25V |
| C11            | 0,47u/25V |
| C12            | 0,47u/25V |
| C13            | 10u/25V   |
| C14            | 100n      |
| C15            | 100n      |
| C16            | 27p       |
| C17            | 1n        |
| C18            | 100p      |
| C19            | 1n        |
| C20            | 100n      |
| C21            | 100n      |
| C22            | 0,47u/25V |
| C23            | 10u/25V   |
| IC1            | 78L12     |
| IC2            | 78L12     |
| LED1           | 10mA      |
| LED2           | 10mA      |

LED1 and 2 are only for indication during tests They can be removed – and also R12 and R23


| Part | Value   |  |
|------|---------|--|
|      |         |  |
| Q1   | 2N2222A |  |
| Q2   | 2N2222A |  |
| Q3   | BC557   |  |
| Q4   | BC557   |  |
| Q5   | BC557   |  |
| Q6   | BC557   |  |
| Q7   | 2N2222A |  |
| Q8   | 2N2222A |  |
| R1   | 470R    |  |
| R2   | 2k2     |  |
| R3   | 3k9     |  |
| R4   | 100R    |  |
| R5   | 12k     |  |
| R6   | 470R    |  |
| R7   | 10k     |  |
| R8   | 1M      |  |
| R9   | 10k     |  |
| R10  | 270R    |  |
| R11  | 10k     |  |
| R12  | 1k      |  |
| R13  | 470R    |  |
| R14  | 12k     |  |
| R15  | 270R    |  |
| R16  | 10k     |  |
| R17  | 1M      |  |
| R18  | 10k     |  |
| R19  | 100R    |  |
| R20  | 10k     |  |
| R21  | 470R    |  |
| R22  | 2k2     |  |
| R23  | 1k      |  |
| R24  | 3k9     |  |

#### List 1: Partslist


Picture 5,6 and list 1 show the layout and partslist.

### Installation and no alignment

The buffer may be installed inside the FS-4 (pictures 14 and 15). Input, output and DC-supply are wired on shortest ways. Only one additional hole has to be drilled on the rear side of the FS-4 (picture 16). No alignment is necessary; also the FS-4 requires no realignment.

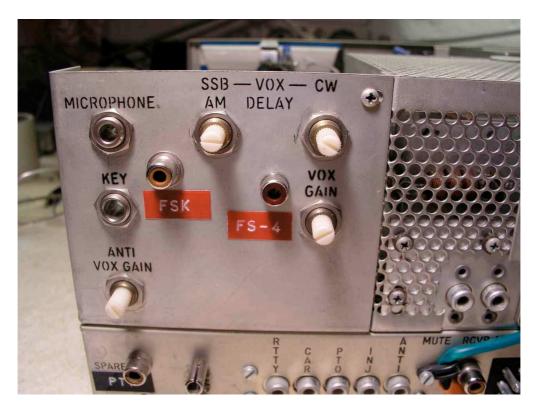



Picture 7: FS-4 Adapter



Picture 8: Supply for the buffer

The buffer's supply is connected to the unstabilised 15VDC in the FS-4 (pictures 8 and 14). Two small holes are drilled into the FS-4's pcb to connect the supply (picture 14, red and black wire).




Picture 9: FS-4 Adapter in the T-4XC

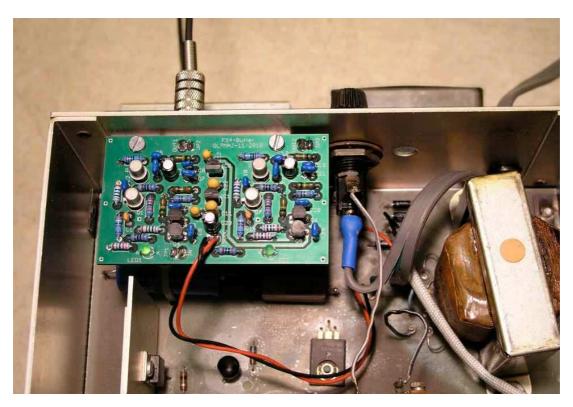


Picture 10: FS-4 Adapter and cabling in the T-4XC

Pictures 9 and 10 show the adapter in the T-4XC at XTAL-position 4 and the cabling. Picture 11 shows the connection at the rear side of the T-4XC.



Picture 11: FS-4 connection at the rear side of T-4XC


Picture 12 and 13 show the other adapter at the R-4C in XTAL-position 15.



Picture 12: FS-4 Adapter at the R-4C



Picture 13: Rubber-feedthrough and cutout at the XTAL-cover



Picture 14: The buffer in the FS-4; output 1 is active – see LED1



Picture 15: Installation of the buffer in the FS-4

The buffer is installed with a small aluminum-profile, the two nuts are fixed with glue - see picture 15.

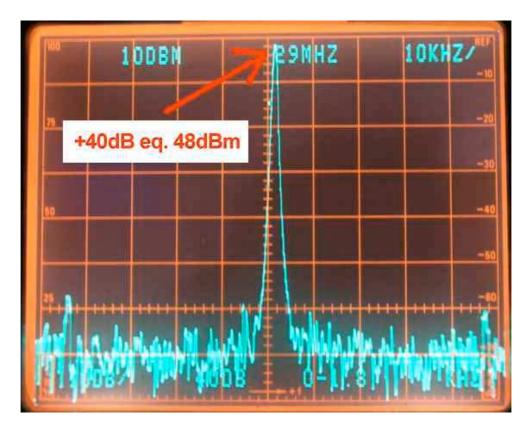


Picture 16: Rear side of the FS-4, R-4C and T-4XC with cabling

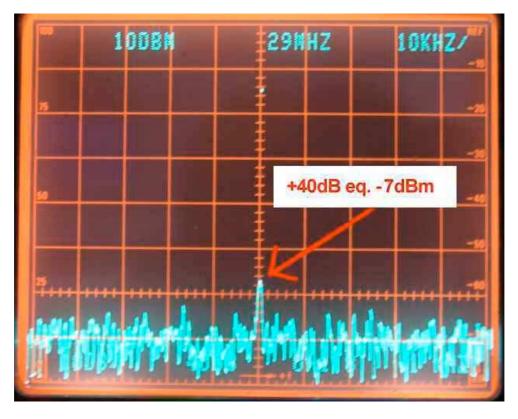
# **HF-Isolation**

When the buffer is automatically switched off, it's output should be ",zero". In reality there is a small capacitive coupling through the buffer and the adapter, so the output is not absolutely zero. I measured a damping of >55 dB with my T-4XC at 10m (29,000MHz).

#### Method:


- 1. 100% output with FS-4 operative, i.e. 48dBm (picture 17).
- 2. Then selecting an empty XTAL-socket in the T-4XC, so that the output should be "zero". No change in the T-4XC-settings! The capacitive coupling caused –7dBm output.

Note: In both pictures, the reference line (top) has +10dBm; the power attenuator had 40dB.


In practice, this would only be a problem when operating with XTAL-control in the same band as the FS-4 operates – but this operation makes no sense.

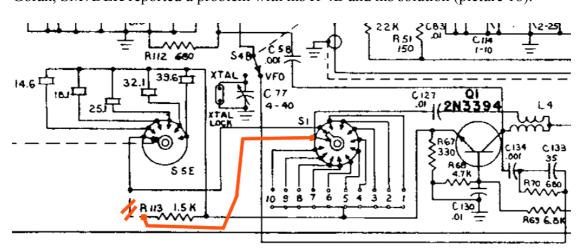
In split operation, all selective circuits within the C-Line prevent any unwanted output or spurii.

The only exception may be split operation within the 10m-Band. In this case, the FS-4 should control the TX.



Picture 17: T-4XC output with FS-4 ON, tuned at 29,000MHz




Picture 18: T-4XC output with FS-4 ON, but other XTAL selected

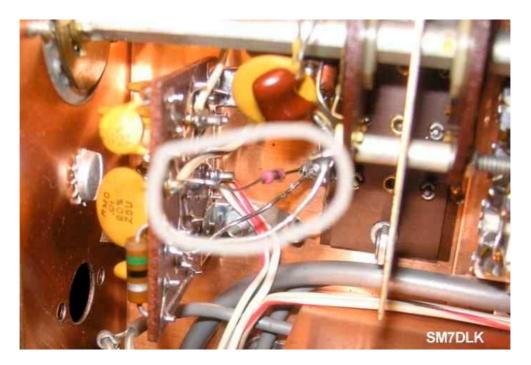
## Use of two buffers

If you have more than two 4-Line rigs (congrats!!), you can use a second buffer connected in parallel to the first buffer; so you have totally four outputs. The input impedance of the buffer amplifier is high enough not to overload the output of the FS-4.

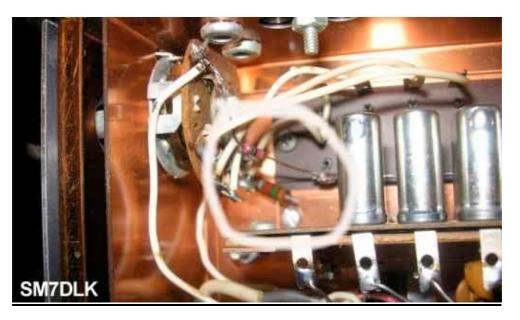
This configuration should be made outside the FS-4 due to the small space inside the FS-4.

## Addendum




Göran, SM7DLK reported a problem with his R-4B and his solution (picture 18).

Picture 18: XTAL-Oscillator in the R-4B


The resistor R113 (1k5) is not wired to S1 but to S5E. Therefore this resistor is active only in the NORM-operation of the crystals. When operating the accessory crystals – or the FS-4- this resistor is not active and therefore it can't activate the buffer amplifier in the FS-4 wizard as described in picture 4 (R110). Göran proposes to cut one side of R113 from S5E and add a new resistor to S1 (wiper) as shown in picture 18 to 21 – mni tnx!



Picture 19: R-4B, cut resistor



Picture 20: R-4B, new resistor



Picture 21: T-4XB, cut resistor

## Note:

I don't know, which rigs from the 4-Line have a need for this modification. When the buffer amplifier is not switched on/off as expected, a check of the wiring is proposed.

/1/ Instruction Manual Drake Model FS-4

If you want to contact the author: Stefan Steger, DL7MAJ, eMail: <u>dl7maj@darc.de</u> Homepage: <u>www.dl7maj.de</u>