

SEA 222 HF SINGLE SIDEBAND RADIOTELEPHONE

INSTRUCTION AND MAINTENANCE MANUAL
(C) Copyright 1985 thru 1994
SEA Inc.
All rights reserved.
FOR U.S. VERSION ONLY. OTHER OPERATING SYSTEMS MAY VARY. REFER TO YOUR SPECIFIC OPERATOR'S MANUAL.

SEA Inc.
7030 220th St. S.W.
Mountlake Terrace, Washington 98043
(206) 771-2182

FAX: (206) 771-2650

Donated to mods.dk by AC5XP

REV. Q4-94
Re-printed 9-95

TABLE OF CONTENTS

PAGENO.

1. GENERAL INFORMATION
1.1 Description 1-1
1.2 Equipment Furnished 1-1
1.3 Mechanical Information. 1-1
1.4 Electrical Specifications 1-2
2. OPERATION
2.1 Warm-Up Caution 2-1
2.2 FCC Requirements 2-1
2.3 Front Panel Controls and Indicators 2-1
2.4 Propagation. 2-4
2.5 Operating Your SEA 222 HF/SSB Radiotelephone 2-4
2.6 Operating the Transmitter 2-7
2.7 Operating Optional Features 2-7
3. PROGRAMMING
3.1 Frequency and Mode Selection 3-1
3.2 Bandwidth Limitation 3-1
3.3 Field Programming the SEA 222 Scratchpad Memory 3-2
3.4 SEA 222 Frequency Program 3-5
3.5 Caution! Frequency Tolerance. 3-13
3.6 Setting the Transmitter Frequencies 3-13
4. INSTALLATION
4.1 Mounting the Transceiver 4-1
4.2 A Typical Installation 4-1
4.3 Rear Panel Connections and Fuses. 4-4
5. THEORY OF OPERATION
5.1 General. 5-1
5.2 The Receiver. 5-1
5.3 Receive RF Circuitry and First Mixer 5-4
5.4 The Transmitter 5-8
5.5 The Phase Locked Local Oscillator System 5-19

6. MODE ANDFREQUENCY CONTROL

6.1 General 6-1
7. THE POWER SUPPLY CIRCUIT
7.1 General 7-1
8. OPTIONS
8.1 C/W Hold Module Installation 8-1
8.2 Low Level Audio Connection 8-5
8.3 Auto-Alarm Option 8-5
9. TEST POINTS
9.1 Main Board D.C. Measurements 9-1
9.2 Transmitter Signal Levels 9-1
9.3 SEA 222 Troubleshooting Aid 9-1
9.4 SEA 222 Final Test 9-4
10. SCHEMATICS AND CIRCUIT BOARD LAYOUTS
11. PARTS LISTS

LIST OF ILLUSTRATIONS

FIG\#
PAGENO.
2.3 SEA 222 FRONT VIEW 2-2
2.7 NECODE INTERCONNECTION DIAGRAM 2-8
4.1 OUTLINE DIMENSIONS 4-2
4.2 TYPICAL INSTALLATION 4-3
4.3.1 POWER PLUG ASSEMBLY 4-5
4.3.3 SEA 222 REAR VIEW 4-6
5.2.1 RECEIVER BLOCK DIAGRAM 5-2
5.3.1 BI-LATERAL I.F. AMPLIFIER 5-5
5.4.1 TRANSMIT BLOCK DIAGRAM 5-9
5.5.1 PLL BLOCK DIAGRAM 5-21
7.1.1 POWER SUPPLY CIRCUITRY 7-2
8.1.1 OPTIONAL CW HOLD MODULE BOARD 8-2
8.1.2 OPTIONAL CN HOLE MODULE SCHEMATIC 8-3
8.1.3 SEA 222 C/W HARNESS DIAGRAM 8-4
8.2 LOW-LEVEL AUDIO OUTPUT DIAGRAM 8-6
8.3.1 AUTO-ALARM MODULE BOARD 8-12
8.3.2 AUTO-ALARM MODULE SCHEMATIC 8-13
8.3.3 SEA 222 AUTO-ALARM HARNESS DIAGRAM 8-14
10.1 SEA 222 TOP VIEW 10-1
10.2 SEA 222 BOTTOM VIEW 10-2

FIG \#

10.3 WIRING DIAGRAM

ASY-0222-01 REVISION L AND PRIOR REVISIONS
10.4 MAINBOARD LAYOUT
10.4.1 MAINBOARD SCHEMATIC (SHEET 1)
10.4.2 MAINBOARD SCHEMATIC (SHEET 2)
10.4.3 MAINBOARD SCHEMATIC (SHEET 3)

ASY-0222-01 REVISION M
10.5 MAINBOARD LAYOUT
10.5.1 MAINBOARD SCHEMATIC (SHEET 1)
10.5.2 MAINBOARD SCHEMATIC (SHEET 2)
10.5.3 MAINBOARD SCHEMATIC (SHEET 3)
10.6.1 ASY-0222-02 P.A./FILTER BOARD LAYOUT
10.6.2 P.A./FILTER BOARD SCHEMATIC
10.7.1 ASY-0322-02 P.A./FILTER BOARD LAYOUT
10.7.2 P.A./FILTER BOARD SCHEMATIC
10.8.1 VCO BOARD LAYOUT
10.8.2 VCO BOARD SCHEMATIC
10.9.1 AUDIO COMPRESSOR BOARD LAYOUT
10.9.2 AUDIO COMPRESSOR BOARD SCHEMATIC
10.10.1 ASY-222F-02 P.A./FILTER BOARD LAYOUT(AUS VERSION)
10.10.2 P.A./FILTER SCHEMATIC (AUS VERSION)

1. GENERAL INFORMATION

1.1 DESCRIPTION

The SEA 222 is a compact, all solid-state, 150 Watt PEP, HF SSB transceiver for the marine and HF radio service.

The SEA 222 covers the 2 to 23 MHz frequency range with channel restrictions which are determined only by the rules regarding the appropriate radio service. That is, the SEA 222 is equipped with a "mask" which limits the transmitter operation to legally assigned channels for the desired service. The frequency "mask" contains ALL normally assigned (ITU) marine channels and has space available for any additional channels which might be desired.

The SEA 222 is fully synthesized with 100 Hz resolution and the channel frequencies are controlled by a precision crystal housed in a temperature-stabilized holder. The transceiver is designed to operate from a 13.6 Volt, negative ground power system and is controlled by a front panel mounted 4×4 keypad. The control computer operating system makes use of an "operator friendly" controller program in conjunction with the eight-character alphanumeric VF (vacuum fluorescent) display.

1.2 EQUIPMENT FURNISHED

1.2.1 SEA 222 Radiotelephone
1.2.2 Microphone and Microphone Clip
1.2.3 Mounting Bracket
1.2.4 Power Connector
1.2.5 Instruction/Maintenance Manual
1.2.6 SEA 222 Operator's Manual
1.3 MECHANICAL INFORMATION

$$
\text { Size } \quad 14 " \mathrm{~W} \times 4.66 " \mathrm{H} \times 13 \mathrm{D}
$$

Weight 13 lbs. (5.9 Kilograms)
Mounting Positions Any Orientation
1.4 ELECTRICAL SPECIFICATIONS
1.4.1 GENERAL
Type Acceptance FCC Parts 81, 83, 87, 90
Circuitry Double Conversion, 45 MHz 1st I.F.,6.4 MHz 2nd I.F.
Front Panel Controls Volume ON/OFF, 4×4 keypad
Channel Capacity 290 channels in factory-programmed memory, 100 channels in field- programmed memory
Operating Temperature -30° to $+60^{\circ} \mathrm{C}$
Range
Frequency Stability 15 Hz
Operating Modes A3A, A3J, 2182.0 KHz A3H in E0
Primary Voltage $13.6 \mathrm{DC} \pm 15 \%$, negative ground
Current Drain:
Receive Standby 2A
Receive, Full Audio 2.5A
Transmit, Average Voice 11A
Transmit, Two Tone 17A
RF Impedance 50 Ohms

1.4.2 TRANSMITTER

Power Output
Frequency Range
Intermodulation
Spurious Emissions
Carrier Suppression
Undesired Sideband Suppression

Audio Response
1.4.3 RECEIVER

Frequency Range
Sensitivity: SSB
Selectivity: SSB
AGC

Intermodulation
Spurious Responses
Audio Power

A3A, A3J, 150 Watts PEP
2-23 MHz
-32 dB below PEP
-65 dB below PEP
-46 dB below PEP
-50 dB below PEP @ 1000 Hz

300 Hz to $2400 \mathrm{~Hz} \pm 3 \mathrm{~dB}$
$500 \mathrm{kHz}-25 \mathrm{MHz}$
$<1 \mu \mathrm{~V}$ for 12 dB SINAD
300 Hz to $2400 \mathrm{~Hz} \pm 6 \mathrm{~dB}$
Less than 10 dB audio level change from 10 uV to 100 mV , fast attack slow release

At least -80 dB
At least -60 dB
4 Watts at less than 10% distortion

2. OPERATION

2.1 WARM-UP CAUTION

Do not attempt to transmit until the radiotelephone is warmed up for at least 3 minutes. Transmitting before the 3 -minute warm-up period has elapsed can cause a violation of FCC regulations.

2.2 FCC REQUIREMENTS

"How to Operate Your Radiotelephone Set" is a booklet available from the Radio Technical Commission for Marine Service (RTCM), 655 Fifteenth Street N.W., Ste. 300, Washington, D.C. 20005, and is highly recommended reading material.

2.3 FRONT PANEL CONTROLS AND INDICATORS

Figure 2.3 illustrates the front panel of the SEA 222. The function of these controls is as follows:

Volume ON/OFF: This control adjusts the loudness of the receiver and turns the set on and off. To turn the set ON, turn the Volume ON/OFF control knob CLOCKWISE until a click is heard. Turning the control knob further clockwise will increase the receiver volume level.

TRANS indicator: This LED indicates (when lit) that the transmitter is activated. Under zero modulation conditions, the LED is dim, brightening under modulation to indicate proper voice output.

THE 8-DIGIT ALPHANUMERIC DISPLAY: The alphanumeric VF display in the SEA 222 is designed to provide the operator with such things as frequency and/or channel data, operator prompting and some specialized data outputs.

THE 4×4 KEYPAD: The 16 keyswitches provided on the SEA 222 allow the operator to communicate with the computer which controls the many functions in the radiotelephone. In order to simplify the operation of the SEA 222, an "operator friendly" software package has been designed which is used in

SEA 222 FRONT VIEW

FIGURE 2.3
2-2
conjunction with the alphanumeric display. All of the keys and the function of each are listed below:

CH/FR: This key allows the operator to display either the channel number or the frequency of operation. Pressing this key when the display reads, "CHAN 801" for example, will, after a short delay, cause the display to indicate the receiver operating frequency which is assigned to channel number 801. Pressing the microphone push-to-talk switch will change the display to read the transmitter frequency assigned to channel number 801. Pressing the CH/FR key again will restore the channel number.

ENT: This key allows the operator to enter a previously-keyed data word into the computer. See examples in I 2.5 , "OPERATING YOUR SEA 222 HF/SSB RADIOTELEPHONE".

SQL: This key activates or deactivates the voice-operated SQUELCH system in the SEA 222. When the squelch is activated, the MOST SIGNIFICANT digit in the display will contain the letter, "Q". When the squelch is deactivated, this display digit will remain blank. The operation of the SQL key will "toggle" the squelch status on and off.

EMER: This key allows one-keystroke recall of the international distress frequency, 2182.0 KHz . It also allows the recall of up to 9 other pre-programmed frequencies. See $\mathbb{T} 2.5$, "OPERATING YOUR SEA 222 HF/SSB RADIOTELEPHONE".

UP and DOWN ARROWS: These keys control the RECEIVER frequency in 100 Hz increments. Pressing the UP arrow will cause the frequency to move UP in 100 Hz increments, while pressing the DOWN arrow reverses the direction of tuning. Clarity tuning range is limited to $\pm 200 \mathrm{~Hz}$ on programmed channels, while "Rx ONLY" channels have unlimited clarity tuning range.

NUMBER KEYS 0 THROUGH 9: These keys allow the operator to enter the required numerical data into the computer. Note that it is necessary to understand the operating system in the computer in order to intelligently enter data. See II 2.5, "OPERATING YOUR SEA 222 HF/SSB RADIOTELEPHONE" for details.

2.4 PROPAGATION

HF signals do propagate far beyond the horizon. MF frequencies (2-3 MHz) are generally usable within 300 miles, depending on the time of day, atmospheric conditions, and man-made noise level.

The High-Seas frequencies (4, 6, 8, 12, 16, 18 and 22 MHz) allow communications over thousands of miles, again subject to the above-mentioned limitations. Interference tends to be more of a problem than on VHF.

2.5 OPERATING YOUR SEA 222 HF/SSB RADIOTELEPHONE

2.5.1 DESCRIPTION OF MEMORY FUNCTIONS

The SEA has TWO memory banks. First, the factory-programmed frequency "mask" contains 290 frequency PAIRS, stored and recalled by CHANNEL NUMBER. Secondly, the internal "scratchpad" memory allows the operator to program and recall 100 frequency pairs. See $\mathbb{I} 3.4$ for ITU channel listing (NOTE: 10 of the 100 field-programmable channels are "EMERGENCY" channels).

2.5.2 PUTTING THE SEA 222 IN THE OPERATING MODE

Turn the volume ON/OFF knob on. The radio will go through a self-test procedure, where the display will show "TEST 1", "TEST 2", followed by "2182.0".

To comply with FCC standards, after three minutes, the radio is ready to operate on 2182.0 KHz .

2.5.3 DIMMING THE DISPLAY

Enter any desired SINGLE-digit number, followed by the "ENT" command. The single-digit command will be interpreted by the operating system as a level of intensity with 0 being display OFF and 9 being maximum display brightness. Note that when the display is extinguished, the first stroke on ANY key will restore the display to maximum brightness.

2.5.4 TURNING THE AUDIO FEEDBACK OFF/ON

To turn off the beep, enter any even digit and the "ENT" key. Example: Press "6", then "ENT". To turn the beep back on, enter any odd digit and the "ENT" key. Example: Press "7", then "ENT". Note: This function is only available in SEA 222's with serial numbers higher than X2724.

2.5.5 TO ENTER SCAN MODE

Channels 10-19 are reserved for scanning, and you can program up to 10 channels using the program mode. To activate, turn radio off, then on to set coupler in neutral tuning mode (it may be necessary to reprogram squelch threshold for operation). To start scanning, press "CH/FR", then " $\mathbf{4}$ ". Scanning stops on active channels, and resumes when channel becomes inactive. To step over an unwanted active channel, press " $\mathbf{\Delta}$ ". To stop scanning, press "EMER" (stops on present channel).

2.5.6 SELECTING A FREQUENCY FROM SCRATCHPAD MEMORY

Enter any desired TWO-digit number, followed by the "ENT" command. The two-digit command will be interpreted by the operating system as the number of the desired "BIN" location in scratchpad memory. Note that the scratchpad memory must be programmed in the field.

2.5.7 SELECTING A CHANNEL BY NUMBER

Enter any desired THREE- or FOUR-digit channel number, followed by the "ENT" command. Example: "4, 0, 3, ENT". Verify that the radio has responded by examining the display which should read: "CH 403". Refer to II 3.4 and/or your Frequency Allocation Booklet for channel versus frequency data.

2.5.8 ENTERING A RECEIVE-ONLY FREQUENCY

Enter any desired FOUR-, FIVE- or SIX-digit frequency between 500.0 and 25000.0 , followed by the "ENT" command. Example: " $1,0,0,0,0,0$, ENT". This will be interpreted by the operating system as a RECEIVE frequency of $10,000.0 \mathrm{KHz}$.

2.5.9 SIMPLEX FREQUENCY DIRECT ENTRY

Enter the desired frequency within the radio's tuning range. While pressing and holding the microphone key, press the "ENT" key. Your radio will be set to operate on the entered frequency on a simplex basis. The UP/DOWN keys will work on a $+/-200$ KHz basis only.

2.5.10 SELECTING AN EMERGENCY CHANNEL

Up to 10 emergency frequencies may be stored in the scratchpad memory of the SEA 222. As already noted, CHANNEL 0 is loaded with 2182.0 KHz , A3H mode. A3H carrier level is adjusted by R30. Any of the emergency channels may be recalled from memory by entering ANY SINGLE DIGIT followed immediately by the "EMER" command.

2.5.11 ACTIVATING THE SQUELCH FUNCTION

The squelch function in the SEA 222 is activated by pressing the "SQL" key on the 4×4 keypad. When the squelch system is activated, the MOST SIGNIFICANT (leftmost) digit in the VF display will show the letter "Q". Pressing the "SQL" key a second time will deactivate the squelch function and the "Q" flag will extinguish.

The SEA 222 squelch system makes use of a software analogue of the "voice operated" squelch used in previous SEA products. It is sensitive to the changing frequency components in the human voice, and therefore requires no level control. A momentary tone will open the squelch, but will not hold it open. A moving tone is required to hold the squelch open. When power is initially applied to the SEA 222, the squelch circuitry will be DE-ACTIVATED.

2.5.12 ACTIVATING THE "TUNED" INDICATOR

The SECOND MOST SIGNIFICANT digit in the VF display is reserved for the antenna coupler "tuned status" digit. When an antenna coupler such as the SEA 1612 is used, the "TND" line from the coupler should be connected to the "TND" port on the accessory plug on the SEA 222 rear panel. The antenna coupler
will signal that it has successfully tuned the antenna by pulling the "TND" line low. This will activate the "TUNED" indicator on the VF display. This indicator is an asterisk (*) in the SECOND MOST SIGNIFICANT digit of the VF display. When the channel is changed, the "TUNED" indicator will extinguish, since a properly-tuned antenna is no longer assured. Once extinguished, the "TND" line must again be pulled low to activate the indicator.

2.6 OPERATING THE TRANSMITTER

The operation of the transmitter is straightforward. Pressing the microphone push-to-talk button will switch the transmitter circuits on. This will be indicated by the VF display changing to the transmitter frequency and the "TRANS" indicator will light dimly. Speak in a normal speaking voice with your lips approximately one eighth of an inch from the microphone. Do NOT shout into the microphone as this may reduce the intelligibility of the transmission. The "TRANS" indicator should modulate with the voice, indicating normal power output. Note that acknowledgment of a message cannot be done by keying the microphone, since no signal is transmitted until the operator actually speaks.

If the SEA 222 is fitted with an antenna coupler such as the SEA 1612, the "antenna tuned" status flag from the coupler will cause the SECOND MOST SIGNIFICANT digit in the VF display to indicate an asterisk (*) when the coupler has properly tuned the antenna system. (See 『T 2.5.12).

2.7 OPERATING OPTIONAL FEATURES

Necode

1. To interconnect the SEA 222NC with a Necode ringer, see Figure 2.7.
2. To configure the SEA 222NC for Necode scan, enter the PROGRAM mode in the normal fashion (See II 3.3.1) and enter up to four desired scan frequencies in scratchpad channels 91 through 94. Exit the PROGRAM mode.
3. Press "9" "9" "ENT" to initiate the scan routine.
4. The frequencies programmed into the Necode scan channels will continue to be scanned until:
a. The Necode equipment decodes a response. This will cause the scan cycle to be stopped, the receiver audio to be unsquelched, and the transmitter to respond with the "acknowledge" signal.
b. The operator presses any key to exit the Necode scan mode.
c. The SEA 222 receives a PTT input and enters the transmit mode.

CW

1. Connect CW key to jack provided on radio rear panel.
2. When the CW key is depressed, a tone will be transmitted with a frequency of approximately 1 KHz .

SEA 222/NECODE INTERCONNECTION DIAGRAM

FIGURE 2.7

3. PROGRAMMING

3.1 FREQUENCY AND MODE SELECTION

As discussed above, the SEA 222 contains TWO memory systems. The factory-programmed frequencies are listed in II 3.4 and are stored in the operating system ROM. Normal access to these frequencies is through the channel number system described above (see I 2.5.7). In addition to those frequencies contained in the factory-programmed memory, the operator may program up to 100 frequency pairs into the nonvolatile EEPROM memory referred to as "scratchpad" memory. This memory is arranged as 100 "bins" or locations and each bin is designed to hold one channel. A channel consists of TWO frequencies, a TRANSMITTER frequency and a RECEIVER frequency.

The frequencies selected for entry into the scratchpad memory must be legally authorized for the desired operating service.

When the SEA 222 is to be used in services other than the Marine Service, it is possible to provide a special program "mask" for the permanent memory. Contact the Factory for information.

3.2 BANDWIDTH LIMITATIONS

The only limitation imposed by the SEA 222 is that the desired frequency be inside the operating range of the equipment.
Totally unrelated duplex pairs might be employed, since the computer controls the filter bandswitching. In practice, the antenna system will have a great deal to do with dictating the maximum allowable frequency separation. If a wide bandwidth antenna system such as a Conical Monopole is used, it is conceivable that the transmitter could operate in the 22 MHz band while the receiver was operating on 2000.0 KHz . If the companion SEA 1612 automatic antenna coupler is used in conjunction with the normal short whip, the allowable 2 MHz split may be reduced to a few hundred KHz .

3.3 FIELD PROGRAMMING THE SEA 222 SCRATCHPAD MEMORY

3.3.1 ENTERING THE PROGRAM MODE

The SEA 222 is forced into the PROGRAM mode by entering the number 8888888 (seven \# 8s). The operating system should signal the operator that the SEA 222 has shifted to the PROGRAM mode by flashing "PROGRAM" on the VF display. After a short delay, the operating system will signal the operator to proceed by prompting "BIN \#?".

3.3.2 ENTERING SCRATCHPAD FREQUENCY AND MODE DATA

After the SEA 222 has shifted to the PROGRAM mode, the operator should select and enter the desired BIN number, such as BIN 10. This would be done by keying in the sequence, "1, 0 , ENT". If the selected bin location is full, the operating system will respond with the prompt, "BIN FULL". This prompt will be held for approximately 2 seconds. If it is desired to "overwrite" the bin location with new data, simply hit any NUMBER key during the 2 -second hold. If the operator does NOT make an entry at this time, the operating system will assume that the data in the chosen bin location is to be saved and will again prompt, "BIN \#?". This will allow the operator to choose another bin location number.

Once the desired bin location is selected, the operating system will prompt, "TX FREQ". The operator should then enter the desired TRANSMITTER frequency down to and including the 100 Hz increment. EXAMPLE: 1, 2, 4, 2, 9, 2, ENT. This will enter the frequency of $12,429.2 \mathrm{KHz}$ in the transmitter frequency memory. At this time, the operating system will prompt, "АЗА?". If the channel requires -16dB carrier insertion, the operator enters the numeral "1". If normal A3J (no carrier) operation is required, the operator simply hits the "ENT" key.

Following the mode selection sequence, the operating system will prompt, "RX FREQ". If the channel being programmed is a SIMPLEX channel, it is only necessary to hit "ENT" once more. This will put the previously programmed TRANSMITTER frequency into the RECEIVER storage location. If the channel being programmed is a DUPLEX channel, it will be necessary to enter the desired RECEIVER frequency. EXAMPLE: 1, 2, 3, 4, 5,

6, ENT. This will enter the frequency of $12,345.6 \mathrm{KHz}$ in the receiver frequency memory. At this time, the bin location has been fully programmed, so the operating system will indicate this by prompting, "BIN 10" (held for one second) "STORED" (held for one second). The operating system will then be ready to program the next location and will signal the operator by again prompting, "BIN \#?".

3.3.3 TO REPROGRAM A CHANNEL

To overwrite already-programmed information:
Re-enter Program Mode (press "8888888").
Press desired two-digit BIN \#, then "ENT".
Example: "10", "ENT". Display will read, "BIN FULL".

Press: Any numeral key.
Example: Press "1".
Display will read, "TX FREQ?".
Continue programming as explained in Section 3.3, FIELD PROGRAMMING THE SEA $२ 22$ SCRATCHPAD MEMORY.

3.3.4 TO ERASE CHANNEL.FREQUENCIES:

Enter the program mode and select the channel to be erased. The display will prompt, "BINFULL". Press any numeric key. The display will prompt, "TX FREQ?", press "ENT". The display will prompt, "RX FREQ?", press "ENT". The frequency information for that channel has been erased and the display will prompt, "BIN\#?".

3.3.5 ADJUSTING THE SQUELCH THRESHOLD

The software SINAD squelch in the SEA 222 has an adjustable threshold which may be reset in the field to compensate for varying levels of noise interference. Normally, this level is set at the factory for proper operation under typical field
conditions. Should it be desired to alter the squelch level, proceed as follows:

Force the SEA 222 into the PROGRAM mode (see IT 3.3.1), and when the operating system prompts, "BIN \#?", the operator should hit the "SQL" key. The operating system will then prompt, "SQ 0-9?", followed by a number indicating the current setting. At this time, the operator can enter any SINGLE number between 0 and 9 by entering the desired number followed by the "ENT" key. Number 0 corresponds to a very LOW squelch threshold, while number 9 corresponds to a very HIGH squelch threshold. Normally, a setting of from 4 to 6 will suit most installations.

3.3.6 EXITING THE PROGRAM MODE

If, after a program entry sequence, no further entries are made for a period of 30 seconds, the operating system will exit the PROGRAM mode and come up on the LAST channel entered while in the PROGRAM mode. If NO entry has been made while in the PROGRAM mode, the system will revert to EMER 0. Further, it is possible to exit the PROGRAM mode immediately by pressing, "EMER". PROGRAM mode will also be exited by cycling the main power switch OFF. When the system comes up, it will be back in the normal operating mode.

3.4 SEA 222 FREQUENCY PROGRAM

(U.S. version. For other variants, refer to your specific Operator's Manual.)

2 MHz BAND

	SHIP	SHIP	
CHANNEL	TRANSMIT	RECEIVE	USE
201	2003.0	2003.0	Ship-to-Ship, Great Lakes 203
2006.0	2006.0	Alaska 209	2031.5
211	2054.0	2490.0	WFA, Tampa; Sched. Weather
212	2065.0	2065.0	British Columbia WX
213	2079.0	2079.0	Ship-to-Ship 214
215	2082.5	2082.5	Ship-to-Ship
	2086.0	2086.0	Ship-to-Ship Only Ship-to-Ship; Mississippi River Ltd. Coast
217	2093.0	2093.0	Ship-to-Ship Only - Comm. Fish 218
2096.5	2096.5	Ship-to-Ship; Ship-to-Ltd. 219	2115.0

CHANNEL	SHIP TRANSMIT	SHIP RECEIVE	USE
251	2427.0	2427.0	Alaska
252	2430.0	2572.0	WLO, Mobile, AL
254	2430.0	2430.0	Alaska
255	2447.0	2447.0	Alaska
256	2450.0	2450.0	Alaska
257	2458.0	2506.0	KGN, Del Cambre, LA
258	2479.0	2479.0	Alaska
259	2482.0	2482.0	Alaska
261	2506.0	2506.0	Alaska
262	2509.0	2509.0	Alaska
263	2512.0	2512.0	FFP, Ft. DeFrance, Windward Is.
266	2535.0	2535.0	
267	2538.0	2538.0	Alaska
268	2563.0	2563.0	Alaska
269	2566.0	2566.0	Alaska
273	2616.0	2616.0	Alaska
275	2638.0	2638.0	Ship-to-Ship
277	2670.0	2670.0	USCG Working
280	2738.0	2738.0	Ship-to-Ship, all except Great Lakes and Gulf
282	2830.0	2830.0	Ship-to-Ship, Gulf Only
301	3023.0	3023.0	
303	3201.0	3201.0	Alaska Point-to-Point
304	3258.0	3258.0	Alaska
305	3261.0	3261.0	Alaska
306	3449.0	3449.0	Alaska Aero
4 MHz BAND			
	SHIP	SHIP	
USE	TRANSMIT	RECEIVE	USE
401	4065.0	4357.0	KMI, Pt. Reyes, CA; WAH, St. Thomas, VI
402	4068.0	4360.0	
403	4071.0	4363.0	WOM, Ft. Lauderdale, FL
404	4074.0	4366.0	
405	4077.0	4369.0	WLO, Mobile, AL; WLC, Rogers City, MI

CHANNEL	SHIP	SHIP RECEIVE	USE
	TRANSMIT		
604	6209.0	6510.0	
605	6212.0	6513.0	
606	6215.0	6516.0	
650	6215.0	6215.0	6 MHz Calling Frequency
651	6224.0	6224.0	6A LTD Coast/Intership
652	6227.0	6227.0	6B LTD Coast/Intership
653	6230.0	6230.0	6C LTD Coast/Intership
	8 MHz BAND		
	SHIP	SHIP	
CHANNEL	TRANSMIT	RECEIVE	USE
801	8195.0	8719.0	
802	8198.0	8722.0	WOM, Ft. Lauderdale, FL
803	8201.0	8725.0	
804	8204.0	8728.0	KMI, Pt. Reyes, CA
805	8207.0	8731.0	WOM, Ft. Lauderdale, FL
806	8210.0	8734.0	
807	8213.0	8737.0	
808	8216.0	8740.0	WOO, Manahawkin, NJ
809	8219.0	8743.0	KMI, Pt. Reyes, CA
810	8222.0	8746.0	WOM, Ft. Lauderdale, FL
811	8225.0	8749.0	WOO, Manahawkin, NJ
812	8228.0	8752.0	
813	8231.0	8755.0	
814	8234.0	8758.0	WOM, Ft. Lauderdale, FL
815	8237.0	8761.0	WOO, Manahawkin, NJ
816	8240.0	8764.0	
817	8243.0	8767.0	
818	8246.0	8770.0	
819	8249.0	8773.0	
820	8252.0	8776.0	
821	8255.0	8779.0	
822	8258.0	8782.0	
823	8261.0	8785.0	
824	8264.0	8788.0	WLO, Mobile, AL
825	8267.0	8791.0	WOM, Ft. Lauderdale, FL
826	8270.0	8794.0	WOO, Manahawkin, NJ; WBL, Buffalo, NY; WMI, Lorain, OH

827	8273.0	8797.0	
828	8276.0	8800.0	WLO, Mobile, AL
829	8279.0	8803.0	WLO, Mobile, AL
830	8282.0	8806.0	WLO, Mobile, AL
831	8285.0	8809.0	WOM, Ft. Lauderdale, FL
850	8291.0	8291.0	
851	8294.0	8294.0	8A LTD Coast/Intership
852	8297.0	8297.0	8B LTD Coast/Intership

12 MHz BAND

SHIP
CHANNEL TRANSMIT

1201	12230.0
1202	12233.0
1203	12236.0

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
12230.0
12236.0
12239.0
12242.0
12245.0
12248.0
12251.0
12254.0
12257.0
12260.0
12263.0
12266.0
12269.0
12272.0
12275.0
12278.0
12281.0
12284.0
12287.0
12290.0
12293.0
12296.0
12299.0
12302.0

SHIP

RECEIVE USE
13077.0 KMI, Pt. Reyes, CA
13080.0 KMI, Pt. Reyes, CA
13083.0 KMI, Pt. Reyes, CA; WOO,

Manahawkin, NJ

WOM, Ft. Lauderdale, FL
WOM, Ft. Lauderdale, FL
WOM, Ft. Lauderdale, FL
WOO, Manahawkin, NJ
WOO, Manahawkin, NJ
WLO, Mobile, AL
13113.0
13116.0
13119.0
13122.0
13125.0
13128.0
13131.0
13134.0
13137.0
13140.0 WOM, Ft. Lauderdale, FL

WOM, Ft. Lauderdale, FL
13143.0
13146.0
13149.0

	SHIP	SHIP	
CHANNEL	TRANSMIT	RECEIVE	USE
1226	12305.0	13152.0	WLO, Mobile, AL
1227	12308.0	13155.0	
1228	12311.0	13158.0	WOO, Manahawkin, NJ
1229	12314.0	13161.0	KMI, Pt. Reyes, CA
1230	12317.0	13164.0	
1231	12320.0	13167.0	
1232	12323.0	13170.0	
1250	12290.0	12290.0	
1251	12353.0	12353.0	12A LTD Coast/Intership
1252	12356.0	12356.0	12B LTD Coast/Intership
1253	12359.0	12359.0	12C LTD Coast/Intership
CHANNEL	TRANSMIT	RECEIVE	USE
1601	16360.0	17242.0	WOM, Ft. Lauderdale, FL
1602	16363.0	17245.0	KMI, Pt. Reyes, CA
1603	16366.0	17248.0	KMI, Pt. Reyes, CA
1604	16369.0	17251.0	

CHANNEL	SHIP	SHIP	
	TRANSMIT	RECEIVE	USE
1623	16426.0	17308.0	
1624	16429.0	17311.0	'KMI, Pt. Reyes, CA
1625	16432.0	17314.0	
1626	16435.0	17317.0	WOO, Manahawkin, NJ
1627	16438.0	17320.0	
1628	16441.0	17323.0	
1629	16444.0	17326.0	
1630	16447.0	17329.0	
1631	16450.0	17332.0	WOO, Manahawkin, NJ
1632	16453.0	17335.0	
1633	16456.0	17338.0	
1634	16459.0	17341.0	
1635	16462.0	17344.0	
1636	16465.0	17347.0	
1637	16468.0	17350.0	
1638	16471.0	17353.0	
1639	16474.0	17356.0	
1640	16477.0	17359.0	
1641	16480.0	17362.0	WLO, Mobile, AL
1650	16420.0	16420.0	
1651	16528.0	16528.0	16A LTD Coast/Intership
1652	16531.0	16531.0	16B LTD Coast/Intership
1653	16534.0	16534.0	16C LTD Coast/Intership
	18 MHz BAND		
	SHIP	SHIP	
CHANNEL	TRANSMIT	RECEIVE	USE
1851	18840.0	18840.0	LTD Coast/Intership
1852	18843.0	18843.0	LTD Coast/Intership
	22 MHz BAND		
	SHIP	SHIP	
CHANNEL	TRANSMIT	RECEIVE	USE
2201	22000.0	22696.0	WOO, Manahawkin, NJ
2202	22003.0	22699.0	
2203	22006.0	22702.0	

2204	22009.0	22705.0	
2205	22012.0	22708.0	WOO, Manahawkin, NJ
2206	22015.0	22711.0	
2207	22018.0	22714.0	
2208	22021.0	22717.0	
2209	22024.0	22720.0	
2210	22027.0	22723.0	WOO, Manahawkin, NJ
	SHIP	SHIP	
CHANNEL	TRANSMIT	RECEIVE	USE
2211	22030.0	22726.0	
2212	22033.0	22729.0	
2213	22036.0	22732.0	
2214	22039.0	22735.0	KMI, Pt. Reyes, CA
2215	22042.0	22738.0	WOM, Ft. Lauderdale, FL
2216	22045.0	22741.0	WOM, Ft. Lauderdale, FL
2217	22048.0	22744.0	
2218	22051.0	22747.0	
2219	22054.0	22750.0	
2220	22057.0	22753.0	
2221	22060.0	22756.0	
2222	22063.0	22759.0	WOM, Ft. Lauderdale, FL
2223	22066.0	22762.0	KMI, Pt. Reyes, CA
2224	22069.0	22765.0	
2225	22072.0	22768.0	
2226	22075.0	22771.0	
2227	22078.0	22774.0	
2228	22081.0	22777.0	KMI, Pt. Reyes, CA
2229	22084.0	22780.0	
2230	22087.0	22783.0	
2231	22090.0	22786.0	
2232	22093.0	22789.0	
2233	22096.0	22792.0	
2234	22099.0	22795.0	
2235	22102.0	22798.0	
2236	22105.0	22801.0	KMI, Pt. Reyes, CA; WOO, Manahawkin, NJ
2237	22108.0	22804.0	WLO, Mobile, AL
2238	22111.0	22807.0	
2239	22114.0	22810.0	
2240	22117.0	22813.0	
2251	22159.0	22159.0	22A LTD Coast/Intership

	SHIP	SHIP RECEIVE	USE

3.5 CAUTION! FREQUENCY TOLERANCE

Under FCC Rules, the frequency tolerance for the Marine Service is $\pm 20 \mathrm{~Hz}$. In order to achieve this accuracy a frequency counter with a long-term accuracy of 1-3 Hertz should be used.

All work affecting the transmitter performance must be done by, or under the supervision of, a person holding at least a General Radiotelephone FCC license.

3.6 SETTING THE TRANSMITTER FREQUENCIES

3.6.1 THE MASTER CLOCK OSCILLATOR

Either of two methods may be used to adjust the Master Clock:

1. Connect a high-stability frequency counter to Pin 8 or Pin 11 of U17 on the Main Board (ASY-0222-01). Signal amplitude is approximately 5 Volts P-P. Adjust trimmer capacitor C151 for a frequency reading of exactly 6400.0 KHz .
2. Select the highest desired transmitter frequency (such as 22171.0 KHz). With the transmitter output connected to an appropriate dummy load and a few watts of re-inserted carrier being generated, connect an appropriate counter to the RF dummy load and adjust trimmer capacitor C151 for the correct carrier frequency. Carrier reinsertion can be activated by programming test frequency into scratchpad memory with "AЗA" toggled on (see pp 3.3). NOTE: This technique, when used with a good frequency counter, is generally superior to method \#1.
3.

4.1 MOUNTING THE TRANSCEIVER

All SEA models are compact enough to allow great flexibility in location, even on smaller vessels. Several options for mounting are available. The mounting bracket fits underneath or on top of the transceiver for bulkhead, overhead or shelf locations. Figure 4.1 shows the outline dimensions of the SEA 222 and mounting holes. When choosing a location for the radio set, take care to avoid areas directly over a heater or lacking adequate ventilation.

4.2 A TYPICAL INSTALLATION

Figure 4.2 shows a typical installation consisting of three parts: (1) The radio equipment; (2) Interconnecting cable; (3) The antenna system.

Any radio communications system operating in the MF-HF spectrum MUST have an adequate ground connection, otherwise the overall efficiency of the radio installation is degraded. In extreme cases, it may be impossible to properly load the radiotelephone into the antenna.

The 50 Ohm output impedance of the SEA 222 makes it necessary to employ an antenna system of the resonant or externally matched type. The use of the SEA 1612 antenna coupler in conjunction with a whip antenna allows an efficient installation, which will cover both the MF and HF bands. The SEA 1612 was designed specifically for marine applications and will easily interface with the transceiver.

On wooden or fiberglass boats, the use of copper ground plate or the keel on a sailboat perform adequately. The ground system MUST be joined to the antenna coupler with a copper strap, kept to the shortest length possible.

FIGURE 4.1

TYPICAL INSTALLATION FIGURE 4.2

POWER PLUG ASSEMBLY
FIGURE 4.3.1

fuse for this circuit is the 5 Amp fuse located on the PA/Filter Board, ASY-0222-02.

TND - This terminal allows the connection of an "ALL TUNED" indicator line from an automatic antenna coupler. Grounding this line will cause the "TUNED" indicator in the VF display to light during transmit. (See I 2.5.12)

GND - Access to the negative side (ground) of the primary supply. Also common to the chassis.

DO NOT USE THESE TERMINALS FOR HIGH-CURRENT APPLICATION.

4.3.4 FUSING

Three fuses are provided in the SEA 222, all mounted internally on the PA/Filter Board (ASY-0222-02).

Fuses F1 and F2 are 15 Amp, AGC. Each fuse protects one pair of power output transistors, and each fuse is provided with a reverse polarity protection diode.

Fuse F3 is a 5 Amp, AGC. This fuse protects the low-level circuitry in the SEA 222 and also provides a fused 13 Volt power buss for an external antenna coupler. This fuse is also provided with a reverse polarity protection diode.

4.3.5 THE GROUND CONNECTION

A stainless steel bolt and nut are provided on the rear panel to allow a low-resistance connection between the radiotelephone chassis and the engine block, keel or similar RF ground system.

5. THEORY OF OPERATION

5.1 GENERAL

The SEA 222 is a double-conversion HF SSB transceiver. Certain circuits perform the same function in receive and transmit (bilateral design). The first intermediate frequency (I.F.) is 45 MHz and permits the use of low-pass filters to provide excellent image, spurious and harmonic rejection. This type of broad-band design results in a minimum of tuned circuits. The second I.F. of 6.4 MHz allows for good secondary image rejection and the use of relatively inexpensive crystal filters for sideband selection.

The SEA 222 uses a two-loop PLL local oscillator system to allow complete frequency coverage without the addition of channel control crystals. Since the high-frequency oscillators are all phase-locked to a high stability reference oscillator, the frequency stability is strictly a function of the 6400.00 KHz Master Clock.

Most operating functions of the SEA 222 are controlled through the front panel keyboard. The keyboard is used, along with the eight-character VF display, as a control terminal. This allows the operator to communicate with the small microprocessorbased computer, which actually controls the various transceiver functions.

5.2 THE RECEIVER

5.2.1 BLOCK DIAGRAM

Figure 5.2.1 shows the block diagram of the receive mode. The received RF signal is routed from the rear panel antenna jack to J 3 on the PA/Filter Board. On this PC Board, the signal is routed through a relay selected set of low-pass filters and the T/R antenna relay, to J2. From J2, the signal goes to the RX input jack on the Main Board, J4. From J4, the signal passes first through a P.I.N. Protector circuit and then through a 2 MHz high-pass filter. A second, low-pass filter with a cutoff frequency of 23 MHz completes the "front end" selectivity. No less than two cascaded filters are used, providing excellent image and first I.F. Rejection.

SEA 222
RECEIVER BLOCK DIAGRAM
FIGURE 5.2.1

$$
5-2
$$

After filtering, the signal is applied to the mixer, A1, where it is mixed with a signal from the $45.5-70 \mathrm{MHz}$ VCO and up converted to the first I.F. Frequency of 45 MHz . The output from A1 is then passed through F1, a 45 MHz two-pole monolithic filter with a bandwidth of approximately 15 KHz . This provides a comparatively narrow "window" which protects the following circuitry from intermodulation problems. The filtered 45 MHz I.F. Signal is then applied to the first bilateral I.F. Amplifier, U1.

After amplification in U1, the 45 MHz I.F. Signal is combined in A2 with a 38.6 MHz signal from the VCXO, down-converted to the 6.4 MHz second I.F. Frequency and passed through F2, a narrow-band signal sideband filter. The filtered signal is then amplified in bilateral I.F. Amplifier, U2, and combined with the 6.4 MHz BFO frequency in mixer A3. The output from A3 is a low-level audio signal which is then amplified by the low-noise audio preamplifier, U3.

Note that the 6.4 MHz filter selects the LOWER sideband. This is actually the UPPER sideband, because of the frequency inversion which occurred at the first mixer.

After being amplified to a suitable level by the low-noise preamplifier stage, the audio signal is then sent to three different circuits: The squelch limiter/amplifier, U7, provides a hard limited signal to the CPU. This signal is examined by the squelch software routine which determines the presence of voice signals.

The low-level audio is also sent to the audio-derived AGC circuitry, which consists of U5B and U5C. These two operational amplifiers provide amplification and filtering to the audio signal, which is then rectified by CR16. The diode output is a fast attack, slow release AGC voltage, which is then applied to the AGC control buss of the I.F. Amplifier stages through U5D.

The third low-level audio signal is sent to the signal audio preamplifier/filter, U5A, where it is approximately doubled in amplitude and band-limited to a cutoff frequency of about 3000 Hz .

After being amplified and filtered, the receiver audio is then passed on to the front panel volume control where the operator can control the audio level applied to the input of the power amplifier stage, U6. The output from U6 provides the loudspeaker signal.

5.3 RECEIVE RF CIRCUITRY AND FIRST MIXER

As previously discussed, an incoming signal is first passed through a system of cascaded low- and high-pass filters, a T/R relay and P.I.N. Diode device, which is designed to protect the sensitive input mixer from damage due to high RF overloads. On the main board, switching diodes CR5 and CR6 are forwardbiased by the +10 V Rx buss, thus passing the received signal to the double-balanced mixer A1. The use of a hot carrier diode double-balanced mixer assures minimal cross-modulation and intermodulation distortion in the receiver front end. The 2 MHz high-pass filter provides some protection from the very large signals generated by nearby standard broadcast transmitters.

5.3.1 THE BILATERAL 45 MHz I.F. AMPLIFIER

The output from A1 is the desired signal, upconverted to 45 MHz and filtered by F1, a two-pole monolithic crystal filter with a bandwidth of about 15 KHz . This 45 MHz signal is then amplified by the first I.F. Amplifier. The amplifier stage is somewhat unique, in that it consists of a tuned MC1350P integrated circuit amplifier surrounded by a P.I.N. Diode array, which allows the direction of signal flow through the amplifier to be reversed by properly reversing the switching diodes. (See Figure 5.3.1.) The advantage of this type of amplifier stage is that the direction of signal flow can be reversed at will, allowing the entire receiver system to "double" as a transmitter. This process minimizes the transceiver circuitry and allows considerable simplification in the design.

5.3.2 SECOND MIXER AND 6.4 MHz SSB FILTER

Once the 45 MHz I.F. Signal is amplified in U1, it is applied to the second double-balanced mixer, A2, along with the VCXO signal at about 38.6 MHz . The DIFFERENCE frequency output, at 6.4 MHz, is then passed through F2, a narrow bandwidth lower

SEA 222
BI-LATERAL I.F. AMPLIFIER

FIGURE 5.3.1
5-5
sideband filter. The LOWER sideband at this point is equivalent to a signal frequency UPPER sideband signal, since the first conversion INVERTS the information band, while the SECOND conversion to 6.4 MHz does not.

5.3.3 6.4 MHz I.F. AMPLIFIER AND PRODUCT DETECTOR

The twice-converted, amplified and filtered signal from the 6.4 MHz filter (F2) is then passed through the second I.F. Amplifier. This is another tuned bilateral MC1350P Amplifier, similar to the first I.F. Amplifier except for operating frequency. The output from the second I.F. Amplifier is then applied to A3, the product detector, along with a BFO signal at 6.4 MHz . The product detector is still another double-balanced hot carrier diode mixer, which assures a low-distortion, low-noise detector with good dynamic range.

5.3.4 LOW-NOISE AUDIO PREAMPLIFIER

Integrated circuit U3 is a low-noise audio preamplifier, which uses the type LM387 dual preamp chip. The first stage (U3A) is configured as a non-inverting amplifier with a stage gain of approximately 35 . The non-inverting configuration is used to assure minimum noise figure.

The second stage (U3B) is configured as an inverting amplifier with a stage gain of approximately 9 . The inverting configuration and lower gain assure maximum dynamic range. Overall gain of the preamplifier stage is approximately 315 with a noise contribution equivalent to approximately 0.5 uV . Since the minimum product detector output is normally approximately 20 UV or better, the AUDIO signal to noise floor exceeds 30 dB .

5.3.5 AUDIO PREAMPLIFIER/FILTER

U5A is connected as a moderate-gain active low-pass filter with a cutoff frequency of approximately 3000 Hz and a slope of $12 \mathrm{~dB} /$ octave. Some additional rolloff is provided in the low-noise preamplifier. The effect of these filters is to remove the high-frequency "hiss" present at the output of the product detector and to enhance the speech signal to noise ratio.

5.3.6 AUDIO POWER AMPLIFIER

Power-integrated circuit U6, a type TDA2002, is used to raise the audio power level to about 4 Watts, which drives either the internal 3.2 Ohm loudspeaker or may be used to drive remote speaker systems through use of the rear panel accessory connector.

5.3.7 SQUELCH LIMITER/AMPLIFIER

Dual operational amplifier U7 is configured as a cascaded twostage audio amplifier. Gain per stage is about 22, providing a total gain of about 480. Since the amplifier is powered from the +5 Volt CPU power buss, the maximum output voltage swing is 5 Volts P-P. Thus, the normal output from U7 consists of heavily limited noise and (when present) voice audio. This signal is sent to the control computer where a software analogue of SEA's normal "voice operated" squelch system resides. If a voice is present in the signal, the computer program will unsquelch the receiver if the squelch has been activated. Like the standard SEA "hardware squelch" system, the squelch requires a moving audio tone to remain open. A single tone will momentarily open the squelch, but will not hold it open.

5.3.8 THE AUDIO-DERIVED AGC SYSTEM

A sample of the low-noise audio preamplified output is routed to U5B, which is configured as a low-gain inverting amplifier/low-pass filter. The amplified, band-limited output is then applied to the input of U5C, which is configured as an inverting amplifier with a gain of approximately 8 . The noninverting input of U5C is connected to approximately +3.4 Volts from voltage divider R59, R60, and R61. The output of U5C is then applied to the AGC detector diode, CR16. The output of CR16 consists of positive voltage peaks, which are proportional to the offset voltage applied to the non-inverting input of U5C. This voltage charges AGC time-constant capacitor, C81, through resistor R70, which provides an AGC attack time of approximately 25 MSec , while the AGC discharge resistor, R71, provides a release time constant of about 2 seconds. This fastattack, slow-release AGC voltage is buffered by a non-inverting
follower, U5D, and applied to the I.F. Amplifier AGC port through steering diode CR17.

5.3.9 THE AUDIO T/R GATES

Integrated circuit U4 and MOSFET Q1 provide T/R gating functions in the audio amplifier circuitry as follows:

U4B is turned ON in the receive mode, and connects preamplifier audio to the AGC amplifier/detector circuit. Turning this device OFF in the transmit mode prevents the AGC storage capacitor from "pumping up" on transmitter microphone audio from the preamplifier circuit. Similarly, U4A serves to disconnect the microphone audio circuitry from the product detector in the receive mode. This avoids any noise contribution from the microphone amplifier/clipper circuitry.

Q1 and U4C are operated by the squelch signal from the CPU. A positive output from the CPU turns Q1 ON, thus shorting the audio signal across the volume control, while the CPU signal is inverted by U4D, and is then used to turn U4C OFF, greatly attenuating the audio signal applied to U5A from the audio preamplifier. Note that the squelch signal is controlled by the CPU and is positive during transmission periods. The overall function of the gate circuitry is to provide a thumpless squelch gate and a rapid, clickless transition between the transmit and receive modes.

5.4 THE TRANSMITTER

5.4.1 BLOCK DIAGRAM

Figure 5.4.1 shows the block diagram of the SEA 222 in the transmit mode. The microphone signal is fed to an amplifier/clipper/filter circuit (U8) for speech wave-shaping, and is then applied through emitter follower Q2 to the balanced modulator, A3. The 6.4 MHz carrier oscillator is also applied to A3. The resulting double-sideband suppressed carrier signal is amplified in the bilateral 6.4 MHz I.F. Amplifier, U2, passed through the 6.4 MHz lower sideband filter, F2, where it is converted to a single-sideband suppressed carrier signal and then mixed with a 38.6 MHz signal in mixer A2. The output from A2 at 45 MHz is amplified by U 1 and then passed through the

SEA 222

TRANSMIT BLOCK DIAGRAM
FIGURE 5.4.1

45 MHz monolithic filter, F 1 , and down-converted to the desired signal frequency by mixing with the required VCO frequency in A1. The signal output from A1 is passed through the front-end, low-pass filter, switching diode CR7 and RF Gain Control R101 to the transmitter preamplifier. This amplifier consists of Q3, Q4, and Q5 and serves to boost the level of the signal to approximately 0 dBm .

The 0 dBm signal from J 5 , the main board transmitter output jack, is then connected by shielded cable to the input jack, J6 on the PA/Filter board, and applied to the transmitter predriver, Q11. Q11, a small power device, provides sufficient drive for the push-pull power driver, which consists of Q9 and Q10. The approximate 10 Watt output from the power driver is then applied to the four-transistor power amplifier, which consists of Q3, Q4, Q5, and Q6 in a dual-amplifier/combiner system.

The output from the power stage is at a level of 150 Watts, and is then passed through an appropriate low-pass filter (relay selected by the control computer) where a voltage sample is detected by CR2 for use as an ALC feedback voltage. The filtered RF output is taken from J3 and connected via coaxial cable to the rear panel RF output jack.

5.4.2 MICROPHONE PREAMPLIFIER

The 600 Ohm dynamic microphone output is terminated by R76 and is then amplified by the microphone preamplifier, consisting of U8A and U8B. Both stages are configured as inverting amplifiers. U8A has an approximate gain of 6.5 and the gain U8B is approximately 12. The cascaded gain of approximately 100 can be adjusted to any required level by the microphone gain control potentiometer, R80.

5.4.3 SPEECH LIMITER

Biased diodes CR20 and CR21 are configured in a full-wave peak clipper circuit. The output from this clipper is limited to about 0.6 Volts P-P by the action of the diodes. Normally, the input signal level is adjusted to approximately 1.2 Volts P-P, which results in a clipping level of 6 dB . To properly adjust the speech limiter circuit, R80 should be adjusted for a signal level
at the cathode of CR20, which is just twice the signal level at the cathode of CR21. This adjustment should be made with normal voice input to the microphone.

5.4.4 SPEECH AMPLIFIER/LOW-PASS FILTER BUFFER

U8C is configured as a low-pass filter with a cutoff frequency of approximately 3000 Hz . Band-limiting of the clipped microphone audio is required to avoid intermodulation effects in later circuitry. The output from the low-pass filter is buffered by inverting amplifier U8D and emitter follower Q2. The audio from Q2 is then passed through T/R gate U4A and applied to the balanced modulator, A3. The gain of U8D is preset to supply the correct modulating audio level to A3 to insure good carrier rejection and proper signal level through the I.F. Amplifiers. Note that adjustment of total transmitter gain is accomplished with R101 and NOT R80. R80 should be adjusted for 6 dB clipping as described above. Increasing the audio level into the clipper will only result in distortion and will NOT increase the peak output from the transmitter.

5.4.5 TRANSMITTER BALANCED MODULATOR

Double-balanced mixer, A3, is used as the transmitter-balanced modulator. The processed microphone audio is applied to the DC coupled port of A3, while the carrier signal at 6.4 MHz is applied to the L.O. Port. The output from the R.F. Port is a double-sideband suppressed carrier signal, which is then applied to the input of the 6.4 MHz bilateral I.F. Amplifier.

5.4.6 CARRIER REINSERTION AMPLIFIER

Carrier is reinserted when desired through amplifier U32. This integrated circuit is a voltage-controlled attenuator, used here to control the level of reinserted carrier. Normally in the A3J mode, the control voltage port of U32 is held at +8 Volts, which cuts off any output signal. When carrier is desired, the control computer switches in a level-control potentiometer, which allows the output signal from U32 to be adjusted to the desired level. Two control potentiometers are provided: The A3A (-16 dB) level pot, R29 and the A3H (-6 dB) level pot, R30. The reinserted carrier signal is routed around F2 and applied to mixer A2.

5.4.7 \quad 6.4 MHz I.F. AMPLIFIER AND SSB FILTER

From A3, the 6.4 MHz double-sideband suppressed carrier signal is applied to the input of the bilateral 6.4 MHz I.F. Amplifier. This amplifier and the 45 MHz bilateral I.F. Amplifier, U1, are both gain-controlled in the transmit mode by the ALC voltage derived from the power amplifier.

The 6.4 MHz crystal filter, F 2 , is a LOWER sideband filter with a total passband of approximately 2.1 KHz . Passing the doublesideband suppressed carrier signal through this filter results in a LOWER sideband 6.4 MHz , suppressed carrier signal which is then applied to the up-converter balanced mixer, A2.

5.4.8 THE UP-CONVERTER, 45 MHz I.F. AMP AND FILTER

The up-converter mixer is a double-balanced diode ring type mixer with inputs from the 38.6 MHz VCXO and the 6.4 MHz I.F. Amplifier. The 45 MHz mixer output is amplifed by U1. The operation of this amplifier is the same as the 6.4 MHz amplifier except for frequency.

The high-impedance 45 MHz monolithic filter is matched to the low-impedance amplifier and mixer stages by "L" networks to provide for a ripple-free, low-loss filter termination. The filter output is applied to the input of the down-converter or signal mixer.

5.4.9 SIGNAL MIXER AND LOW-PASS FILTER

A1 is another double-balanced ring diode mixer which changes the 45 MHz IF frequency to the desired OPERATING frequency by mixing with a signal from the VCO. The use of the DIFFERENCE frequency here results in a frequency inversion. Thus, the output signal is an UPPER sideband SSB signal as required. The mixer output is passed through a seven-section ellipticalfunction, low-pass filter, which provides some 50 dB of rejection for the image and I.F. Frequencies above 23 MHz .

5.4.10 TRANSMITTER SIGNAL PREAMPLIFIER

The signal output from the low-pass filter is switched through CR7 to the input of the transmitter preamplifier. This is a two-stage wide-band amplifier, with the first stage configured as a two-transistor direct-coupled pair. The first transistor, Q3, is connected as a common emitter stage which is directly coupled to Q4. Q4 is an emitter follower which provides power gain and impedance matching for the output signal. DC feedback from the emitter of Q4 to the base of Q3 stabilizes the circuit operating point over a wide temperature range, while the use of VHF transistors provides a very wide frequency response.

Q5 is driven from the output of emitter follower Q4 and is configured as a transformer-coupled ground emitter amplifier. DC feedback is provided by the emitter resistor, R107. The output from this stage is nominally +10 dBm . From J5, the SSB signal goes to the PA/Filter board for further amplification.

5.4.11 TRANSMITTER PREDRIVER

The transmitter low-level signal is applied through a 3 dB pad and a wide-band transformer to the base of Q11. Q11 is a 2N3866 connected in the common emitter configuration and is transformer-coupled to the push-pull driver stage. Bias for Q11 is provided by the base resistor network with R41 used to adjust the idling (no signal) current in the device to 60 mA . (0.30 Volts across R43) R43 is used, along with the press-on heat sink, to provide thermal stability.

5.4.12 TRANSMITTER DRIVER (FOR RADIOTELEPHONES WITH D OR E SUFFIX SERIAL NUMBERS, SEE PG. 5-17)

Transistors Q9 and Q10 are small, plastic RF power devices, connected as push-pull common emitter amplifiers. Transformer T11 provides push-pull base drive from the collector of Q11, while transformers T9 and T10 provide collector-to-load impedance matching and DC power decoupling, respectively. Gain/bandwidth compensation is provided by the collector/base feedback networks and the various peaking capacitors and terminating resistors. Temperature tracking bias is provided for Q9 and Q10 by bonding a silicon diode, CR9, to the PC-mounted heat sinks for Q9 and Q10. Idling current (no
signal) for the driver devices is approximately 100 mA and is adjusted by selecting the correct value for FS3 and/or FS4.

As part of the gain/bandwidth compensation circuitry for the total power amplifier, the output from the transmitter driver is connected to the output power amplifier through a 3 dB pad consisting of R30, R31, and R32.

5.4.13 TRANSMITTER POWER AMPLIFIER

The power amplifier in the SEA 222 is made up of two 75 Watt power amplifier modules, a power splitter and a power combiner. Each amplifier module is a push-pull common emitter design, each is independently fused, and each has its own temperature-stabilized bias source. Each amplifier, like the push-pull driver, has the collector voltage present at all times. The amplifiers are activated by turning on the various bias supplies when in the transmit mode. The power amplifier bias is provided from the +10 Volt TX buss across two silicon diodes, one diode of which is bonded to the heat transfer plate used to heat sink the power devices. This is CR8. CR7, in series with CR8, is used to compensate for the junction voltage drop of the two amplifier bias emitter followers, Q7 and Q8.
Each amplifier is normally adjusted to 250 mA idling current (no signal). R26 adjusts the idling current for Q3 and Q4, while R27 adjusts the idling current for Q5 and Q6.

At the input to the power amplifier, T8 is provided as a wideband hybrid which splits the power driver output into two equal parts. Each of these signals is then independently amplified by a two-transistor push-pull power amplifier module. The amplifier outputs are then recombined in hybrid T1. Resistors are provided to terminate each hybrid in the event of failure of one of the power amplifier modules.

Configuring the power amplifier in this fashion has the advantage of providing for better system redundancy, better heat distribution for the output devices and additionally provides a much wider range of useable output power devices.

5.4.14 OUTPUT LOW-PASS FILTER(S)

Four low-pass filters are provided to cover the frequency range from $2-23 \mathrm{MHz}$. The highest frequency filter, which covers the $16-23 \mathrm{MHz}$ spectrum is in the circuit at all times. When lower frequencies are in use, a lower frequency filter is placed in series with the $16-23 \mathrm{MHz}$ filter. This provides much greater total VHF stopband rejection than would the use of independent filters. Note that the high-frequency filter is a 5pole elliptical function design, while the lower frequency filters are 7-pole elliptical function types. This is possible because of the natural drop in spurious outputs from the power amplifier at higher frequencies. Filter selection is through small power relays, which are operated by the control computer through serial relay driver, U1.

5.4.15 ALC CIRCUIT

The ALC circuit provides a DC level which is proportional to the RF output at the antenna connector on the rear panel. This DC level is used to control the gain of the two I.F. Amplifiers on the main board in order to prevent transmitter overload and resultant nonlinearity. An additional function of the ALC circuit is to provide a visual "modulation" indication of the transceiver front panel. This helps the operator determine that (s)he is properly modulating the transceiver.

The voltage across R5 is derived from the actual RF output voltage through a voltage divider and diode detector CR1 and CR2. The output from the detector is applied to R5/C3, which has a time constant of approximately 250 mSec . This fast attack/medium fast release voltage waveform is buffered by emitter follower Q1, routed to the main board through J1 and the interboard cable, and then applied through steering diodes to the ALC control buss and the LED driver circuitry.

Thus, it can be seen that the main board gain control potentiometer, R101, sets the average gain "floor" for the transmitter and the ALC potentiometer adjusts the attack threshold for the ALC feedback voltage. Under normal drive conditions, the instantaneous ALC feedback voltage will not exceed the idling DC level on the ALC buss. Under high drive conditions, when the output attempts to exceed 150 watts, the

ALC feedback will override the DC level and reduce transmitter gain to prevent distortion.

FOR RADIOTELEPHONES WITH D OR E SUFFIX SERIAL NUMBERS (X5537D etc.)

5.4.12 TRANSMITTER DRIVER

Transistors Q9 and Q10 are small plastic RF power devices, connected as a push-pull common emitter amplifier.
Transformer T11 provides push-pull base drive from the collector of Q11, while transformers T9 and T10 provide collector-to-load impedance matching and DC power decoupling, respectively. Gain/bandwidth compensation is provided by the collector/base feedback networks and the various peaking capacitors and terminating resistors. Temperature tracking bias is provided for Q9 and Q10 by Q15 and Q16. Idling current (no signal) for the driver devices is approximately 130 mA and is adjusted with potentiometer R57. Q15 is an emitter follower, which supplies the high-current, low-impedance bias source for Q9 and Q10.

5.4.13 TRANSMITTER POWER AND AMPLIFIER

The power amplifier in the SEA 222 is made up of two 75 watt power amplifier modules, a power splitter and a power combiner. Each amplifier module is a push-pull common emitter design, each is independently fused, and each has its own temperature-stabilized bias source. Each amplifier, like the push-pull driver, has the collector voltage present at all times. The amplifiers are activated by turning on the various bias supplies when in the transmit mode. The power amplifier bias is provided from the +10 Volt Tx buss. This voltage is applied to silicon transistors Q12 and Q13. These transistors are heat sensors, and are bonded to the heat transfer plate which serves as a power amplifier heat sink. The bias generators consist of the two sensor transistors and their buffers Q7 and Q8. The operation of each pair is identical. Bias pair Q12 and Q7 are configured as an amplifier-buffer with the output to the amplifier bias port taken from the emitter follower, Q7. Current through amplifier Q12 is a function of the setting of potentiometer R60 and the heat sink temperature. Each amplifier is normally adjusted to 150 mA idling current (no signal). R60 adjusts the idling current for Q3 and Q4, while R63 adjusts the idling current for Q5 and Q6.

At the input to the power amplifier, T8 is provided as a wideband hybrid which splits the driver power output into two equal parts. Each of these signals is then independently amplified by a two-transistor push-pull power amplifier module. The amplifier outputs are then recombined in hybrid T1. Resistors are provided to terminate each hybrid in the event of failure of one of the power amplifier modules.

5.4.14 OUTPUT LOW-PASS FILTER(S)

Four low-pass filters are provided to cover the frequency range from $2-25 \mathrm{MHz}$. The ranges of these filters are as follows: Band 4 is $2-3.4 \mathrm{MHz}$, Band 3 is $3.4-6.8 \mathrm{MHz}$, Band 2 is $6.8-13.2 \mathrm{MHz}$, Band 1 is $13.2-25 \mathrm{MHz}$. Note that the high-frequency filter is a 5 -pole elliptical function design, while the lower frequency filters are 7-pole elliptical function types. This is possible because of the natural drop in spurious outputs from the power amplifier at higher frequencies. Filter selection is through small power relays, which are operated by the control computer through serial relay driver, U1.

5.4.15 ALC CIRCUIT

The ALC circuit provides a DC level which is proportional to the RF output at the antenna connector on the rear panel. This DC level is used to control the gain of the two IF amplifiers on the main board, preventing transmitter overload and resultant nonlinearity. An additional function of the ALC circuit is to provide a visual "modulation" indication on the transceiver front panel to help the operator to determine that (s) he is properly modulating the transceiver.

The voltage across R69 is derived from the actual RF output voltage through a voltage divider and diode detector CR2. The output from the RF envelope detector is applied through follower U2A and ALC diode CR7 to the fast-attack, slowrelease time constant circuitry, consisting of R34, R35, and C5. The attack time constant is a function of R34 and C5, while the release time is controlled by R35 and C5. The ALC voltage is buffered by voltage-follower U2B and combined in noninverting amplifier U2C with a voltage from the ALC control potentiometer, R38. The output from U2C is an amplified, level-shifted voltage which follows the peaks of the RF
envelope faithfully. This voltage is applied to the IF amplifiers on the main board through steering diodes.

In order to provide a modulation indication, the output from U2A is connected through R3 to the base of the LED driver on the main board. Thus, the collector current of Q6 and the front panel LED brilliance is a function of the instantaneous RF output voltage. The ALC voltage cannot be used directly as a modulation indication, since this voltage is conditioned to follow the RF output peaks on a fast-attack, slow-release cycle. This would cause the LED brilliance to appear to "hang" at peak levels under modulation.

5.5 THE PHASE-LOCKED LOCAL OSCILLATOR SYSTEM

5.5.1 BLOCK DIAGRAM

Figure 5.5.1 shows the block diagram of the phase-locked local oscillator system of the SEA 222.

A two-loop system is used in the SEA 222, consisting of the high-frequency loop, operating with a 6.4 KHz reference frequency and the low-frequency loop, which operates with a 100 Hz reference. The combination of two loops provides 100 Hz resolution over the high-frequency spectrum, along with reasonable loop switching and settling times.

The high-frequency loop starts with the VHF VCO (Voltage Controlled Oscillator). This oscillator actually consists of two separate oscillators, where the tuning range is divided into two approximately equal segments. The use of two oscillators, bandswitched by the control computer, provides good VCO spectral purity over the desired tuning range of $45.5-70 \mathrm{MHz}$. Both VCOs are varactor-tuned by an output voltage from the phase detector in synthesizer chip, U11.

The signal from the selected VCO is buffered and then applied to the first signal mixer, A1. Simultaneously, a sample of the VCO output is applied to the high-speed loop dual modulus prescaler, U12.

The low-speed loop starts with the 38.6 MHz VCXO, Q15. This oscillator operates over the range of 38.5984 to 38.6047 MHz and
is varactor-tuned by an output voltage from the phase detector in synthesizer chip U16.

The VCXO signal is buffered by Q16 and then applied to the second signal mixer, A2. Simultaneously, a sample of the VCXO signal is applied to one of the inputs of an HCMOS exclusive OR gate. A buffered 6.4 MHz signal from the master clock oscillator is applied to the second input of the exclusive OR gate which acts as a harmonic mixer. The output signal is the difference between the VCXO signal and the 6th harmonic of the clock signal at 38.4 MHz , or approximately 200 KHz . This 200 KHz signal is filtered, buffered and then applied to the signal input of the low-speed loop synthesizer chip, U16.

SEA 222

PLL BLOCK DIAGRAM
FIGURE 5.5.1

$$
5-21
$$

From the above discussion, it may be seen that ALL of the internal conversion oscillator frequencies are phase-locked to the 6400.0 KHz master clock oscillator, that the first conversion oscillator consists of a VCO, which operates as a "coarse tuning" oscillator having a basic resolution of 6.4 KHz and that, finally, the second conversion oscillator operates as a "fine tuning" loop which tunes 6.3 KHz in 100 Hertz steps.

5.5.2 THE REFERENCE CLOCK OSCILLATOR

The master clock oscillator operates at a frequency of 6400.0 KHz . This frequency allows the use of a compact, high-stability crystal which is enclosed in a temperature-stabilized holder. The combination of a high-stability crystal, capacitors of the proper temperature coefficient and crystal temperature stabilization provides excellent frequency stability over the environmental temperature range of the equipment. Warm-up time for the clock oscillator is less than three minutes.

The oscillator used is the oscillator portion of synthesizer chip U11. This circuit has been especially designed for use as a stable, high-frequency crystal oscillator and also provides for the high-speed loop reference divider in the form of the builtin divide-by-R counter. This counter is set to 1000 and provides the phase detector with a stable reference of 6.4 KHz .

5.5.3 LOW-SPEED LOOP REFERENCE

In order to provide a 100 Hz reference for the low-speed (100 Hz) phase-locked loop, a sample of the 6400.0 KHz master clock signal is divided by 125 in three cascaded quinary counters. Two high-speed quinary counters are provided by U18 and the third by U14. The output from U14 is at a frequency of 51.2 KHz . This 51.2 KHz signal is then applied to the reference divider input of synthesizer chip U16. The internal divide-by-R counter in U16 is set to 512 during fireup initialization, thus providing U16's phase detector with a stable reference of 100 Hz .

5.5.4 CPU CLOCK DIVIDER

The CPU clock signal for the control computer is also derived from the master clock oscillator through one of the flip-flops in U18. Dividing the 6400.0 KHz master clock signal by two provides the CPU with a stable clock signal at 3200.0 KHz . This is within the allowed clock range of the CPU and assures that CPU operation will be synchronous with all other counters in the radio, thus minimizing counter-generated noise and spurious signals.

5.5.5 THE HIGH-FREQUENCY DIVIDE-BY-N COUNTER

The high-speed divide-by-N function is performed through use of the built-in divide-by-N counter in synthesizer chip U11 in conjunction with the dual modulus prescaler chip, U12.

In practice, the high-frequency signal from the VCO is applied to U12, which normally operates in the divide-by-16 mode until a control signal from the divide-by-A counter in U11 forces it into the divide-by- 15 mode. The number of cycles in each prescaler mode, along with the internal divide-by-N counter, determines the actual divide-by- N modulus. The required modulus is calculated by the control computer for each given frequency and then the proper A and N counter register numbers are loaded into the synthesizer chip (U11) by the control computer.

NOTE: Revision M and later main boards U12 divide by 32 and 33 .

5.5.6 HIGH-FREQUENCY PHASE DETECTOR/LOOP FILTER

Integrated circuit U11 also contains the high-frequency phase detector, whose output is proportional to the phase difference between the clock-derived 6.4 KHz reference frequency and a similar input derived from the dual modulus/divide-by-N counter described in $\mathbb{\$}$ 5.5.5. The error voltage is filtered through a second order R/C filter and applied to the varactor tuning elements in the VCO circuit.

5.5.7 THE VCO SYSTEM AND ASSOCIATED BUFFERS

In the SEA 222, the first conversion oscillator consists of a pair of voltage-controlled oscillators. These oscillators cover the frequency range of $45.5-70 \mathrm{MHz}$ (corresponding to an operating frequency range of $500-25000 \mathrm{kHz}$) and make use of a UHF low-noise transistor in a Colpitts oscillator circuit. Each oscillator covers approximately one half the overall frequency range and the active oscillator is selected by the control computer through the transistor switches Q4 and Q5.

The frequency-determining inductors are of the high Q toroidal type, while each oscillator uses a matched pair of hyperabrupt junction varactors as the tuning element.

The two oscillators are coupled to the emitter follower buffer, Q3, through small capacitors and the followers' low impedance output is applied to the high-speed prescaler, U12, and the VCO buffer amplifier system. The VCO buffer consists of transistors Q12, Q13, and Q14. Q12 and Q13 are connected as a direct-coupled two-transistor wide-band amplifier, while Q14 is connected as a common emitter, transformer-coupled power buffer. The output from Q14 is terminated with a 3 dB pad and the +7 dBm output from the pad is applied to the LO input port of signal mixer, A 1 . The purpose of the 3 dB pad is to provide a constant 50 Ohm termination point for the mixer LO port and the buffer transistor output.

The two VCO circuits are essentially identical except for tuning range, and are sufficiently buffered to prevent "pulling" or noise modulation from the counter train or mixer. Typical near field noise sidebands are 60 dB or better below normal output on all channels in the frequency range of the equipment.

5.5.8 THE VCXO AND ASSOCIATE BUFFERS

The VCXO (voltage controlled crystal oscillator) serves as the second conversion oscillator for the SEA 222 and operates at approximately 38.6 MHz .

The crystal oscillator is a transistor overtone type, with an inductor in series with the crystal. Coupling varactor CR23 to the series inductor allows the crystal oscillator to be voltage-
tuned over the required frequency range. Q16 amplifies the VCXO signal to the level required by the second mixer, A2. A sample of the VCXO signal is also sent to the VCXO down converter, U17.

5.5.9 THEORY OF OPERATION: SECONDARY (VCXO) LOOP

The VCXO signal is down-converted in U17, a HCMOS exclusive OR gate. In this application, the exclusive OR gate operates as a double-balanced harmonic mixer. An input from the VCXO at 38.6 MHz is mixed with a sample of the 6400.0 KHz master clock signal. The mixer output is taken at approximately 200 KHz and is the difference signal between the 38.6 MHz VCXO signal and the sixth harmonic of the master clock signal at 38.4 MHz.

The 200 KHz difference signal is buffered and filtered by the components associated with L16 and Q17, further buffered by another exclusive OR gate (operating as a non-inverting buffer) and then sent to the signal frequency input of synthesizer chip, U16.

In U16, an appropriate divide-by-N number is loaded into the divide-by-N counter by the control computer. This will result in the 200 KHz down-converted VCXO signal being further reduced in frequency to approximately 100 Hz .

The down-converted, down-counted VCXO signal is now applied to the tri-state phase detector in U16 and compared in phase with the 100 Hz signal derived from the master clock. (See II 5.5.3.) The resultant DC error signal is passed through a second order R/C loop filter and applied to the VCXO tuning varactor, CR23.

6. MODE AND FREQUENCY CONTROL

6.1 GENERAL

In the SEA 222, the frequency of operation is determined by loading a serial bit stream containing a binary number in the two synthesizer chip registers in the frequency synthesizer circuitry.

These binary numbers are calculated through an internal algorithm by the control computer. When the operator loads a desired frequency into the control computer, the computer then calculates all the required binary data streams and inputs the information into the various control registers.

Such data as filter band, VCO band (high or low), VCO loop divide-by-N, VCXO loop divide-by-N, and various control bits are all calculated by the computer, once the desired channel is entered by the operator.

6.1.1 TRANSMITTER MODE SELECTION

The primary mode of operation of the SEA 222 is in the A3J (SSB with fully suppressed carrier) mode.

Two auxiliary modes are provided:
A3A: SSB with pilot carrier re-inserted 16 dB below PEP.
A3H: SSB with pilot carrier re-inserted 6 dB below PEP (AM equivalent).

A3J is the basic SSB operating mode and is used for ship-toship, base station-to-ship, and point-to-point communications.

A3H is a secondary mode, designed to allow a degree of compatibility between old-style AM equipment and SSB systems. In this mode, the carrier is suppressed only 3 to 6 dB below PEP. Such systems are inherently wasteful of the power capability of any SSB transmitter. As required by law, the "E\#O" channel is provided with A3H carrier. (See Page 1-2 Operating Modes.)

In the SEA 222, the normal mode of operation is ALWAYS A3J. On public correspondence channels, the operator may, if desired, insert a -16 dB carrier, by entering the desired A3A channel into "scratchpad" memory and inserting the A3A bit (see I 3.3.2 for scratchpad programming information). A3H mode operation on 2182.0 KHz (the international distress and calling frequency) is available by recalling emergency channel E\#O. (Note: R30 on the main board may be adjusted for approximately 40 Watts during transmit.)

Two carrier insertion potentiometers are provided on the main board. R29 and R30 control the reinsertion level in the A3A and A3H mode, respectively.

6.1.2 RECEIVE MODE SELECTION

Since the SEA 222 as normally supplied always operates as a normal upper-sideband-only SSB receiver, little mention need be made of alternate modes of operation.

AM reception is by the "exhalted carrier" or "zero beat" method. That is, the incoming signal is simply tuned in until the carrier wave is zero beat with the internal BFO. This technique has proven completely adequate for those applications where voice fidelity is desired. For reception of music, the internal I.F. and A.F. filters sharply limit the level of fidelity which may be achieved.

7. THE POWER SUPPLY CIRCUIT

7.1 GENERAL

The basic supply voltage for the SEA 222 is a negative ground, 13.6 Volt DC source. Line voltage regulation of $\pm 15 \%$ or better is required, with a current capacity of at least 25-30 Amperes.

From this raw source are derived the necessary regulated operating voltages for the SEA 222 circuitry.

7.1.1 BLOCK DIAGRAM

Figure 7.1.1 shows a simplified schematic diagram of the power supply circuitry.

Once the basic 13.6 Volt power is provided, it is connected to the set through the heavy-duty power plug, P 1 , on the rear panel. Three internally-mounted fuses are provided to protect the set in the event of malfunction. Each fuse has a reverse voltage protection diode, which will blow the fuse in the event of reversed line polarity.

The ON/OFF switch is part of the volume control potentiometer. From this switched 13.6 Volt buss, protected by 5 Amp fuse F3, all other required voltages are derived, EXCEPT the high-current 13.6 Volt buss to the final amplifier transistors.

Several regulators, located throughout the set, distribute the required voltages. All the +10 Volt busses are derived from the 10 Volt regulator on the main board.

The +10 Volt Rx and Tx busses are generated through computer control of inverted transistor switches, Q10 and Q11, while the +13.6 Volt Tx buss is generated on the PA/Filter board through computer control of switching transistor Q2.

The +8 Volt and +5 Volt logic buss voltages are generated from the switched +13.6 Volt buss through the use of standard threeterminal regulators, U29 and U30.

SEA 222
SIMPLIFIED DIAGRAM OF
POWER SUPPLY CIRCUITRY
FIGURE 7.1.1

$$
7-2
$$

7.1.2 +10 VOLT REGULATOR AND THE Tx/Rx SWITCHES

The +10 Volt regulator in the SEA 222 makes use of the PNP power transistor as a series pass device. This transistor, Q7, is connected as an inverted power stage with its base drive derived from a negative feedback amplifier consisting of Q8 and Q9.

In operation, the base of emitter follower Q9 is provided with a sample of the +10 Volt regulator output through resistor network R193, R194. This sample is supplied to the emitter of feedback amplifier Q8.

The base of Q8 is provided with a stable reference voltage from zener diode CR30. This device has a nearly "flat" temperature vs. voltage characteristic, and is further stabilized by obtaining its voltage drive from the +10 Volt buss.

Since the base voltage of Q8 is stabilized by CR30, the collector current in Q8, and thus the base current of the series pass transistor Q7, is inversely proportional to the voltage at the base of Q9. That is, a RISE in the voltage at the base of Q9 causes a REDUCTION in base drive to Q7. This in turn causes the output voltage to be reduced. Similarly, a DROP in the voltage at the base of Q9 will result in an INCREASE in base drive to Q7, which causes the output voltage to be increased.

R189 is shunted across Q7 to provide "start up" voltage for the regulator system. Potentiometer R193 is the +10 Volt adjustment, and allows the regulator to be "trimmed" to exactly +10 Volts by setting the base voltage on Q9. Resistor R190 is provided to limit the base drive to Q7. This provides a degree of short-circuit immunity for the regulator, since the base drive for Q7 tends to "starve off" at about 1 Amp of output current.

The use of the inverted PNP transistor Q7, as the series pass device, has the advantage that the regulator will remain operational under low-line voltage conditions. The low-line limits are primarily a function of the E-C saturation voltage in Q7, which is normally less than 0.5 Volts. Thus, the regulator will provide excellent 10 Volt buss stability, even when the input line voltage has dropped to approximately 10.5 Volts.

Transistors Q10 and Q11 generate the non-overlapping +10 Rx and +10 Tx busses, respectively. These devices are operated as inverted transistor switches and are controlled by the main control computer through the serial relay driver device, U1. U1 is located on the PA/Filter printed circuit board. The use of transistor switches to generate the Tx and Rx buss voltages eliminates any problems with relay contacts or T-R buss timing.

7.1.3 +8 VOLT AND +5 VOLT REGULATORS

In the SEA 222, the synthesizer circuitry operates from a regulated +8 Volt buss, while the control computer operates from a regulated +5 Volt buss. These voltages are provided by standard three-terminal voltage regulator integrated circuits, U29 and U30. U29 is a 7808 and provides the +8 Volt buss, while U30 is a 7805 and provides the +5 Volt buss.

7.1.4 VF DISPLAY/DISPLAY DRIVER -25 VOLT SUPPLY

The eight-character alphanumeric VF display used in the SEA 222 requires a well-regulated negative power supply for correct operation. This voltage is provided by the components associated with switching regulator integrated circuit, U26. L17 is the "ringing choke" in a standard switching inverter/regulator, with the output voltage being "dumped" into C156 through diode CR28. Resistors R160 and R161 set the output voltage at approximately -25 Volts DC. Zener diodes CR27 and CR32 are used to set the correct operating voltage levels on the display and display driver chip, U24. The - 25 Volt inverter operates from the +13.6 Volt switched buss.

7.1.5 VF DISPLAY FILAMENT OSCILLATOR

VF displays require an alternating current filament supply in order to avoid "shading" effects. In the SEA 222, this need is supplied by the quad CMOS buffer, U25. This chip operates as a free-running oscillator/buffer, and supplies a 5 Volt P-P square wave output which is capacitively coupled to the display filament circuit through C160 and C161. The frequency of oscillation is controlled by R168 and C159. The frequency of oscillation is chosen to prevent "strobing" of the display.

8. OPTIONS

8.1 C/W HOLD MODULE INSTALLATION

The SEA 222 can be optionally equipped with a semi-breakin CW adapter (SEA PN\# ASY-0222-06).

The CW adapter module is located on a PC board which replaces the metal shield over the CPU/display driver circuitry. Three control potentiometers are mounted on the printed circuit board and allow adjustment of the following parameters:

1. R17, the "DELAY" control. This pot is closest to the centerline of the radiotelephone. Using this control, it is possible to adjust the hold in time experienced by the PTT line AFTER the LAST key closure.
2. RII, the "SIDETONE" control. This pot is the center control and is used to adjust the volume level of the sidetone heard in the speaker while the key is down.
3. R13, the "MODULATION" control. This pot is the closest to the right side panel, and is used to adjust the power output level of the transmitter when the key is down. Normally, a power level of 100 watts is correct for the SEA 222. NOTE THAT THE SEA 222 IS NOT A CONTINUOUS DUTY CYCLE TRANSMITTER. KEY DOWN TIME SHOULD BE LIMITED TO NORMAL HAND-KEYED CW MODULATION.

THEORY OF OPERATION:

The CW module consists of a keyed audio oscillator, keyed delay circuit and a sidetone amplifier. When the key line is grounded, transistor Q2 operates as a phase shift oscillator at approximately 1000 Hertz. The resultant audio signal from "MIC" is used to modulate the SSB transmitter. A sample of the audio signal is coupled to buffer amplifier U1 and used to provide a sidetone signal to the radiotelephone loudspeaker. During key down intervals Q1 conducts heavily, charging delay capacitor C11 through diode CR3. This positive voltage causes heavy conduction in MOSFET Q3, which pulls the radiotelephone PTT line low and keys the transmitter. R17, the "DELAY" potentiometer, adjusts the time constant of C11 and thus
controls the hold in period. At the end of the hold in period, the transceiver reverts to receive mode.

8.1 OPTIONAL
 C/W HOLD MODULE BOARD
 FIGURE 8.1.1

notes:
UNLESS OTHERWISE SPECIFIED

1. CAPACITORS ARE IN MICROFARADS

8.1 OPTIONAL
 C/W HOLD MODULE SCHEMATIC
 ASY-0222-06

FIGURE 8.1.2

CW BOARD

GND	BLK	$10.5^{\prime \prime}-$ KEY JACK GND TAB
KEY	GRN	$10.5^{\prime \prime}-$ KEY JACK TIP
MIC	WHT	$10.5^{\prime \prime}-$ P6 AF
SPKR	BLUE	$2.5^{\prime \prime}-$ P4 SPKR
13.6	WHT/ORG	$4.5^{\prime \prime}-$ P11 13.6 SW
PTT	ORG	$8.5^{\prime \prime}-$ P8 PTT

RADIOTELEPHONE
10.5"-KEY JACK GND TAB
10.5"-KEY JACK TIP
10.5"-P6 AF
2.5"-P4 SPKR
4.5"-P11 13.6 SW
8.5"-P8 PTT

8.1 OPTIONAL

SEA 222 CW HARNESS

FIGURE 8.1.3

8.2 LOW LEVEL AUDIO CONNECTION

The SEA 222 is capable of being interfaced with weatherfax decoders and Necode ringers. The interface is quite simple, requiring an audio connection at the rear accessory terminal J1 Pin 1 (spare) using a jumper coaxial cable (see Fig. 8.2).

The interfacing wires can act as an antenna, coupling a portion of the transmitted R.F. back into the radio. Symptoms of this include:

1. The coupler won't tune a particular range of frequencies. 2. When the radio is keyed, full power out occurs without modulation.
2. According to the Marine Operator, the transmitter sounds distorted, off frequency, or weak.
3. The radio has low transmit power on some frequencies when connected to the coupler but appears fine into a 50 ohm load.

Should this problem appear, there are several possible remedies, including the installation of a ferrite kit. Contact the SEA service department for guidance.

8.3 AUTO-ALARM OPTION

8.3.1 INSTALLATION

The alarm generator can be interfaced with the SEA 222 either internally or externally.

To install the external version, connect the terminals on the rear panel as follows:

Viewed from the rear, connect the left ground terminal to the negative DC supply wire and the cable shield braid. Connect the positive DC supply wire to the terminal marked + . Connect the MIC terminal to the remote audio input terminal of the transceiver. NOTE: THE SEA MICROPHONE

8.2 OPTIONAL

SEA 222 LOW LEVEL RECEIVER AUDIO OUTPUT FOR NECODE RINGERS OR WEATHERFAX PRINTERS

FIGURE 8.2

$$
8-6
$$

INCLUDES A MICROPHONE BREAK CONTACT ENSURING THAT EXTERNAL AUDIO SOURCES ARE NOT LOADED BY THE MICROPHONE BUTTON. THIS FEATURE IS NEEDED TO ENSURE THAT THE SEA ALARM 100 WILL PROVIDE SUFFICIENT AUDIO TO PROPERLY MODULATE THE TRANSMITTER.

Connect the PTT terminal to the push-to-talk terminal of the radiotelephone. The right hand ground terminal should be used for the microphone and PTT ground wire in the cable.

The internally installed alarm generator replaces the aluminum CPU shield in the SEA 222. Install the unit as follows:

1. Remove both the top and bottom covers from the transceiver.
2. Disconnect the microphone terminals and loosen the front bezel retainer screws.
3. Remove the front bezel and microphone.
4. Unplug the ribbon connector from the keypad to the CPU area on the main board.
5. Remove the four front panel retainer screws and remove the front panel, placing the front panel face down immediately in front of the chassis.
6. Remove the loudspeaker and volume control from the old front panel and install them on the new front panel which has the new keypad assembly.
7. Install the new front panel/keypad in place of the original.
8. Plug in the 4×4 keypad ribbon connector into the CPU area on the main board.
9. Remove the four screws which hold the aluminum CPU shield in place and remove the shield.
10. Place the auto-alarm assembly in the area originally occupied by the shield. Board orientation is such that the CPU is toward the FRONT of the radiotelephone and the interface connections to the LEFT.
11. Plug the 4 -pin connector from the keypad into the 4 -pin terminal on the auto-alarm assembly. Install the wiring harness per the illustration (Fig. 8.3.3).
12. Replace the front panel bezel assembly and reconnect the microphone, using a tie-wrap to help secure the microphone inside the radio. Place the "SEA ALARM 100 installed" label provided with the auto alarm kit on the rear panel of the SEA 222. Installation is now complete except for adjustment of levels.

8.3.2 ADJUSTING THE ALARM GENERATOR

Connect the radiotelephone to an appropriate dummy antenna or power meter. If possible, monitor the transmitter output with an oscilloscope. Press the TEST and ALARM ON keys simultaneously and while the alarm signal is being transmitted, adjust R35 to balance the two tones to the same level and R39 for the proper modulation level. Press OFF to terminate test. Press TEST key and adjust R38 for the desired sidetone level.

8.3.3 OPERATION

When the radio user has determined that the transmission of the distress alarm is appropriate (announcing that a distress call is to follow, transmission of an urgent cyclone warning, man overboard call), he should select the desired operating frequency on the companion radiotelephone. Then, by depressing BOTH the TEST and the ALARM ON keys SIMULTANEOUSLY (on the external version, the keys are pressed on the alarm unit; on the internal version, the keys are pressed on the radio's keypad), the alarm signal will be generated and the PTT line held low for 45 seconds. The alarm may be terminated at any time by pressing the STOP key.

8.3.4 THEORY OF OPERATION

The alarm generator uses a dedicated single chip microprocessor to generate the alternating two tone radiotelephone alarm signal. The microprocessor also controls the alarm timer. All tones and timer loops are based on the crystal controlled time base oscillator, which insures extreme stability. The microprocessor circuitry operates from a +5 volt regulator, further ensuring that the equipment has high immunity from line voltage variations.

The 1300 Hz and 2200 Hz tones are generated by the operating program in the microprocessor. Each tone uses four output ports and a binary weighted resistor array as a piecewise linear sine wave generator. Each "stepped" sine wave is then passed through a low Q bandpass filter to further insure that harmonic distortion is minimal. The filtered outputs are then summed and passed through a modulation level potentiometer.

A sample of the alarm signal is amplified by a small audio power amplifier integrated circuit and used as a sidetone for monitor purposes.

8.3.5 ALARM INITIATION SYSTEM

Switch transistor Q1, control transistor Q2 and a software loop are used to apply power to the CPU chip, U1, when an alarm routine is initiated. This is accomplished through steering diodes CR1 and CR2. When either the TEST or ALARM ON keys are pressed, the +5 volt regulated buss voltage is applied through CR1 and/or CR2 to the base of Q2. The conduction of Q2 saturates Q1 which applies power to the CPU chip. The application of power to U1 causes it to intitialize and output a latch signal on pin 15 which holds power on until the alarm sequence timer releases pin 15.

This system insures that the microprocessor is powered down at all times until an alarm signal is actually requested. This minimizes the standby power requirements and further insures that no CPU noise can be generated during receiving periods.

8.3.6 BANDPASS FILTERS

Dual operational amplifier U2 is configured as a pair of multiple feedback bandpass filters. Each is designed for a nominal Q of approximately 5 and provides a small amount of voltage gain at the design center frequency. Fine tuning is accomplished with potentiometers R29 and R32. R29 is used to tune the 1300 Hz filter and R32 tunes the 2200 Hz filter. The two filters are summed in BALANCE
potentiometer R35. The BALANCE control, together with the two filter tuning potentiometers, provides sufficient range to allow the tone levels to be balanced under nearly any condition.

8.3.7 SIDETONE AMPLIFIER

U3 is a small power audio amplifier integrated circuit. It receives its input signal from the summer output through the SIDETONE level potentiometer. Sufficient audio power is available to drive the transceiver loudspeaker. Normal practice is to adjust the sidetone to a low but clearly audible level. This usually requires only a few milliwatts. Since over a watt of audio is available from U3, sufficient audio is available for any reasonable purpose.

8.3.8 THE PTT CIRCUITRY

Q3 is used as an open collector switch to pull the transmitter PTT line to the negative rail when the alarm is running. Base drive is provided by CPU chip U1 in the ALARM ON mode. Q3 is a small power transistor which can switch several hundred milliamperes of current and withstand about 50 volts.

8.3 OPTIONAL

AUTO-ALARM MODULE BOARD
ASY-0222-07
FIGURE 8.3.1

$$
8-12
$$

WIRING HARNESS SPECIFICATIONS

AUTO-ALARM MODULE			RADIOTELEPHONE
PTT	ORG	$8.0^{\prime \prime}$	P8-PTT
MIC	WHT	$7.0^{\prime \prime}$	P6-AF
SPKR	BLU	$5.25^{\prime \prime}$	P4
GND	BLK	$5.5^{\prime \prime}$	P5
13.6	WHT/ORG	$2.0^{\prime \prime}$	P11-13.6SW

8.3 OPTIONAL

SEA 222 AUTO-ALARM MODULE
FIGURE 8.3.3
8-14

9. TEST POINTS

9.1 MAIN BOARD D.C. MEASUREMENTS

Page 9-7 is a list of Transistor and Integrated Circuit Pins and the D.C. voltage measured on those pins under receive and transmit conditions. When the receive/transmit status is not listed, the measurement indicated is the same for both receive and transmit conditions.

These measurements were made with a Fluke Model 8024B High-Impedance Digital Multimeter.

9.2 TRANSMITTER SIGNAL LEVELS

Page 9-8 lists test points vs. signal levels for both the Main Board and the PA/Filter Board. Test conditions are noted.

These measurements were made with the Tektronix 465B Oscilloscope equipped with a P6105 Probe.

9.3 SEA 222 TROUBLE SHOOTING AID

I. Radio does not turn on:

1. Check input power for +13.6 VDC.
2. Check F3 on the P.A. board.
a. If F3 is open - measure resistance P1 to ground with P1 - P2 jumper removed. Must be greater than 1.5K ohms. If lower suspect Q9 and Q10.
3. Check voltages on main board:
a. +13 VDC on P12 all the time.
b. +13 VDC on P 11 with radio turned on.
if voltage is on P12 but not P11, check on/off switch
c. +10 VDC on center pin of Q7.
d. +8 VDC on U29 (out)
e. +5 VDC on U30 (out)
f. +5 VDC on pins $1 \& 40$ of U20 (cpu) - if no voltage on pin 1 check anode of CR29 for approximately +6.5 VDC
4. With oscilloscope check pins 38 and 39 of U20 for a $5 \mathrm{vp}-\mathrm{p}$ frequency of 3.2 MHz .
II. Radio operates but no display:
5. Measure DC resistance of L17 and L18 - typically 6 ohms
6. Measure DC resistance of R159 - should be 2.2 ohms
7. Measure display voltages:
a. -24 VDC on anode of CR28
b. 0 VDC on Pin 2 of U26
c. +5 VDC on Pin 1 of U24
d. -10 VDC on Pins 18 \& 20 of U24
8. Measure AC filament voltage between pins $8 \& 9$ on U25 approximately 3 VAC
III. Radio operates, squelch does not work:
9. Check squelch threshold for \#4 or \#5 (get into program mode and press SQL key when prompt shows BIN\#?)
10. With an oscilloscope check for:
a. +5 VDC on pin 2 of U20 going low every 11 msec for a period of 55 usec.
b. Limited ($5 \mathrm{vp}-\mathrm{p}$) audio on pin 37 of U20.
11. Input signal is changing audio frequency at voice rate. A steady tone will not hold squelch open.
IV. Unlock condition:
12. Check to see which loop is unlocked a. Measure dc voltage on cathode of CR24. If low - VCXO unlocked - normally +8 VDC.
b. Measure dc voltage on cathode of CR25. If low - VCO is unlocked - normally +8 VDC.
c. Due to complexity of loops, it may be quicker to replace the main board if unlocked.
V. Keypad not responding:
13. When a key shorts:
a. At turn on display will have background flutter or bypass turn on prompts and go directly to TEST. This depends on the software version in radio. Many cases, the radio will not have receive audio.
b. If key shorts intermittently, the key that shorted shows on the display (\triangle FREQ will cause freq. change). c.If key stays shorted, will not be able to enter a channel or transmit. Unplug keypad to have key show on display and test to see if transmit is possible if and when a channel or frequency is displayed.
d. If keypad opens - no response from keys but other functions work (transmit, receive, and volume).
VI. No transmit (voltages shown are when in TX \& modulating):
a. Check that PTT line goes from +5 VDC to ground when mic button is pressed.
b. Have +9.2 VDC on left side of R4 on main board.
c. Pin 5 of U4 should be +10 VDC. Pin 6 of U4 should be 0 VDC.
d. With oscilloscope, typical voltages at test points:

- mic input (P6 main board) $=200$ to $300 \mathrm{mvp}-\mathrm{p}$
- emitter of Q2 = $200 \mathrm{mvp}-\mathrm{p}$
- bottom side of R38 = $50 \mathrm{mvp}-\mathrm{p}$
- cathode of CR13 $=325 \mathrm{mvp}-\mathrm{p}$
- left side of R31 = 85 mvp-p
- anode of CR7 = $200 \mathrm{mvp-p}$
- output of main board (J5) into 50 ohm load $=.6 \mathrm{vp-p}$ for 150W PEP. No load = $1.2 \mathrm{vp}-\mathrm{p}$.

5. Check bias (idle) current of P.A. transistors with J6 unplugged.
a. Q1 emitter voltage $=0.27 \mathrm{VDC}$ in TX
b. Q9 \& Q10 collector current (measure between P1 \& P2 stakes with jumper removed) $=130 \mathrm{~mA}$ in TX for serial \# X5537 and higher; 100 mA in TX for serial \# X5536 and lower.
c. Q3, Q4, Q5, \& Q6 collector current (pull F3 for Q3 \& Q4 and put ampmeter in place of fuse) $=150 \mathrm{~mA}$ in TX for serial \# X5537 and higher; 250 mA in TX for serial \#X5536 and lower. Do the same for Q5 \& Q6 but remove F2.
6. Check K1 for operations and that relays for appropriate filter are completely closing.
VII. No receive:
7. Check that jumper on rear panel plug is in place between AF and SPKR terminals.
8. The squelch is turned off (no "Q" in display window).
9. Left side of R 9 on main board is +10 VDC .
10. AGC voltage at cathode of CR17 $=4.8$ VDC (no signal). A higher voltage reduces receiver gain.
11. If transmit section tests checked good, assume that IF sections work.
a. While transmitting you can test U3 with an oscilloscope and should have $1 \mathrm{vp}-\mathrm{p}$ on pin 4 . Pin 5 should have $4.2 \mathrm{vp}-\mathrm{p}$.
b. With a 0.1 ufd coupling cap, jumper between pin 5 of U3 and pin 2 of U6. You should hear audio even with the volume turned down. With the jumper still in place, you should hear audio in the speaker when transmitting.
12. Check for +10 VDC on pin 6 of U4 and 0 VDC on pin 5 of U4 in RX mode.

9.4 SEA 222 FINAL TEST

I. Turn radio on and observe the display. It should read:

SEA 222
BEEP ON
TEST 1 - program area verifies good
TEST 2 - frequency area verifies good
II. Transmitter Test:

1. Connect the output of the radio to a Bird wattmeter which is connected to a 50 ohm dummy load.
2. Connect an oscilloscope using a $X 10$ probe to ' T ' on wattmeter (or output of radio). Make sure scope is set at $50 \mathrm{v} / \mathrm{div}$. - sweep speed is 2 ms .
3. Turn the ALC control R38 (R5 on older radios) on the PA board fully ccw.
4. Switch to CH 451 - a beep should be heard with each keypress. If no beep is heard check for the audio jumper on rear plug. The 4-6 MHz filter relays should energize.
5. Whistle into the microphone and adjust R101 on the main board up until the wattmeter reads 150 watts.
6. Adjust R38 (R5 on older radios) on the PA board cw until the wattmeter begins to decrease.
7. Short junction of C52 and R28 to ground. (This will allow a carrier for measuring the output frequency). Assuming that a frequency counter is connected to the vertical output of the oscilloscope in use, key radio and adjust C151 for frequency in display (if channel \# is showing in display, then press $\mathrm{CH} / \mathrm{FR}$ key).
8. Perform talk test on each frequency band while watching both the wattmeter and oscilloscope. With a strong voice (FIVE), the wattmeter should show approximately 50 watts if not more. The oscilloscope will show $250 \mathrm{vp}-\mathrm{p}$ for 150 watts PEP. Also note that the TRANS LED should
brighten while talking. If a monitor radio is available then listen to transmitted signal.
III. Receive Test:
9. Disconnect coax from radio to wattmeter and connect coax from radio to signal generator. Use caution not to transmit into signal generator.
10. Set signal generator to 1 uV output amplitude and adjust frequency 1 KHz higher than frequency shown in radio display (display reads 4125.0 - set generator to 4126.0).
11. A 1 KHz tone should be heard at the speaker (check rear panel audio jumper if no tone is heard). Set the volume to a comfortable level.
12. Connect an Audio Voltmeter, preferably SINAD meter, between ground and the rear panel jumper (speaker). Set SINEADDER to SINAD position.
13. Meter movement on the SINEADDER should move to the left showing at least 12 dB SINAD (normally 18 dB).
14. Repeat the above steps for each band of frequencies.
15. Set SINEADDER to AC voltage.
a. Adjust volume control for -10 dB on the meter.
b. Increase the signal generator by 10 dB .
c. Meter should increase no more than 10 dB .
d. Switch sineadder to next higher scale and increase the generator an additional 90 dB .
e. The meter should increase no more than 10 dB from the previous value.
f. Decrease the signal generator output to 1 uV .
g. Turn up the volume control to maximum noting the audio voltmeter. The meter should show a minimum of 2 vrms.
h. Reset the volume control to a comfortable setting.
16. Press SQL key (turn the squelch on). The radio should mute the speaker in approximately 2 seconds.
17. Increase the signal generator frequency by 1 KHz . The squelch should open for approximately 2 seconds and then close.
18. Decrease the signal generator frequency by 1 KHz . The squelch should again open for 2 seconds and then mute the speaker.
19. Repeating steps 9 and 10 should hold the squelch open.

IV. Chassis Hardware:

1. Check that all chassis hardware is tight.
2. All screws holding the boards are in place and tight.
3. Install both covers and tighten the cover screws.

TRANSMITTER SIGNAL LEVELS (Reference to Chassis Ground)

MODE - CW/SSB 1000 Hz Tone; USB; 50 mvpp ; 2182.0 Displayed; ALC Full CCW

SEA 222 BOTTOM VIEW FIGURE 10.2

MAINBOARD
ASY-0222-0 1 REVISION L AND PRIOR

FIGURE 10.4

MAINBOARD SCHEMATIC
SHEET 3 OF 3
FIGURE 10.5.3

rboard
22-02

NOTES Unless otherwise specified
1 RESISTORS ARE IN OHMS, $1 / 4 \mathrm{w}, 5 \%$

R47
R48
R48
R45
R85
R85
R87
R88
R1
R1
R2

VCO BOARD

FIGURE 10.8.1

ASY-0222-03
 VCO SCHEMATIC

FIGURE 10.8.2

THE FOLLOWING FIGURES (10.9.1, 10.9.2, $10.10 .1 \& 10.10 .2$) REFER TO BOARDS THAT ARE CONTAINED IN SEA222 RADIOS TYPE ACCEPTED FOR AUSTRALIA, NEW ZEALAND AND GERMANY.

AUDIO COMPRESSOR BOARD
 FIGURE 10.9.1

[^0]

R BOARD

LEVEL	PART	DESCRIPTION	QTY/ASSY	UM
0.	222	HF/SSB RADIOTELEPHONE		EA
1.	ASY-0222-02D	PA/FILTER ASSEMBLY	1	EA
1.	ASY-0222-10	FRONT PANEL ASSY	1	EA
1.	ASY-0222-20	222 CHASSIS ASSY	1	EA
1.	FAB-0222-21	222 COVER, BLACK	2	EA
1	FAB-0222-22	SIDERAIL EXTRUSION, BLACK	2	EA
1	FAB-0222-23	BEZEL, BLACK	1	EA
1.	FAB-0222-24	MOUNT ING BRACKET, BLACK	1	EA
	HAR-0044-002	WASHER, FL NY . $315 \times .141 \times$	4	EA
	HAR-060D-313	6-32x5/16 PAN-L SCREW	8	EA
1	K IT-0222-99	SEA 222 HARDWARE KIT	1	EA
1	OPR-222	OPERATORS MANUAL	1	EA
	OPS-222US-U22	OPERATING SYSTEM (RED)	1	EA
	OPS-222US-U23	SYSTEM EEPROM (RED)	1	EA
	ASY-0222-01	MA INBOARD	1	EA
	B0X-0222-C1	LARGE FOAM RADIO EOX	1	EA
	BOX-0222-02	LARGE FOAM RADIO INSERT	i	EA
	FOM-0222-03	FOAM END CAPS	2	EA
	HAR-0029-004	COR-PAK BREATHABLE POUCHES	1	EA
1.	HAR-0083-001	5/8×1/4 UNTHD STANDOFF	4	EA
1.	M1C-0002-010	MICROPHONE ASSY	1	EA
1..	ASY-0222-28	PLUG-IN ASSEMBLY	1	EA
1..	W0222000.1F0	222 FINAL ASSY	0	EA
1.	ASY-0223-10M	CABLE ASSY 5.0"	1	EA
1..	FAB-0222-08	R.F. SHIELD	1	EA
1..	MAN-222	MANUAL FOR SEA 222	1	EA
1...	WIR-0001-010	PHONO CABLE 10"	1	EA
1..	WIR-0001-014	PHONO CABLE 14"	1	EA

REF DES	PART ALM	DESCRIPTION
A1	Mix-0002-001	DBL BAL MIXER
42	M $\mathrm{X}-0002-001$	DBL BAL MIXER
A3	Mix-0002-001	DBL BAL MIXER
Cl	CAP-0006-001	CAP, MLLTILAYER CER DIP. 1
C10	CAP-0001-015	CAPACITOR MICA 100pf
c100	CAP-0013-001	CAPAC TOR MONO , IUf
0101	CAP-0013-001	CAPACITOR MONO . 1 Lf
0102	CAP-0013-006	CAP. MONO .047UF
0103	CAP-0013-006	CAP.MONO .047UF
C104	CAP-0037-010	CAP. ELECT 470UF RAD
C105	CAP-0037-010	CAP. ELECT 470UF RAD
C105	CAP-0013-001	CAPACITOR MONO . 1 If
0108	CAP-0013-005	CAPACITOR MONO . 001 uf
C109	CAP-0006-001	CAP, MLTILLAYER CER DIP. 1
C11	CAP-0001-003	CAPACITOR MICA 22pf
0110	CAP-0005-001	CAP, MULTILAYER CER DIP . 1
0111	CAP-0013-003	CAPACITOR MONO . 04 Uf 100 V
C+12	CAP-0013-003	CAPACITOR MONO . 014 f I00V
0143	CAP-0001-012	CAPACITOR MICA 68pf
$0+15$	CAP-0001-007	CAPACITOR MICA 36pf
C116	CAP-0006-004	CAP, MLLTILAYER CER DIP . 047
017	CAP-0001-015	CAPACITOR MICA 100pf
C118	CAP-0001-00E	CAFACITOR MICA 33pf
C119	CAP-0002-018	CAP 4.7PF TUE-CERAMIC 10\%
$\mathrm{Cl2}$	CAP-0001-004	CAPACITOR MICA 27pi
0120	CAP-0002-016	CAP 3.3PF TUB-CERAMM 10%
C121	CAP-0006-004	CAP, MULTILAYER CER DIP .047
0122	CAP-0025-002	CAPACITOR TRIMMER 2-10p
0123	CAP-0037-002	CAP.ELECT 2.2Uf RAD
0124	CAP-0005-003	CAF, MLLTILAYER CER DIP . 001
C125	CAP-0001-030	CAPACITOR MICA 360,f
0428	CAP-0013-001	CAPACITOR MONO .tuf
C127	CAP-0013-003	CAPACITOR MONO . O1uf 100 V
0128	CAP-0013-001	CAPACITOR MONO . 1 f
C129	CAP-0013-001	CAPACITOR MONO . 1 Uf
013	CAP-0001-040	CAP, MICA 6.2pf or DISC 6 pf
0130	CAP-0001-018	CAPACITOR MICA 160pf
0131	CAP-0012-003	CAP, MYLAR . $0015 \mathrm{Uf} / 100 \mathrm{~V}$
0132	CAP-0006-00	CAP, MULTILAYER CER DIF . 1
C133	CAP-0001-024	CAPACITOR MICA 560pf
C+34	OAP-0006-002	CAP, MULT L LAYER CER DIP . 01
C:35	CAP-0006-001	CAP, MLL TILAYER CER DIP .i
C136	CAP-0027-474	CAPACITOR FILM CKO5 . 47
C137	CAF-0027-104	CAPACITOR FIUM CKO5.1
C139	CAP-0006-001	CAP, MULTILAYER CER DIP .
014	CAP-0025-002	CAPACITOR TRIMMER 2-10pf
C140	CAP-0013-003	CAPACITOR MONO . 014 f 100V
C141	CAP-0013-001	CAPACITOR MONO . iuf
C142	CAP-0013-001	CAPACITOR MONO . iut
C143	CAP-0006-001	CAP, MLTILAYER CER DIP :
C: 44	CAP-0006-003	CAP, MULTILAYER CER DIP .001

C145	CAP-0006-003
C146	CAP-0006-003
C147	CAP-0000-000
C148	CAP-0006-001
C149	CAP-0006-001
C15	CAP-0025-002
C150	CAP-0001-010
C151	CAP-0025-001
C152	CAP-0030-009
C153	CAP-0001-017
C154	CAP-0006-001
C155	CAP-0006-001
C156	CAP-0037-007
C157	CAP-0030-009
C158	CAP-0037-006
C159	CAP-0027-472
C16	CAP-0013-003
C160	CAP-0037-002
C16	CAP-0037-002
C162	CAP-0030-007
C163	CAP-0006-001
0164	CAP-0031-008
C165	CAP-0006-001
C166	CAP-0027-104
C167	CAP-0006-001
C168	CAP-0006-001
C169	CAP-0006-001
C17	CAP-0013-001
C170	CAP-0006-001
C171	CAP-0006-001
0172	CAP-0013-001
C173	CAP-0037-005
0174	CAP-0006-001
C175	CAP-0037-005
C177	CAP-0006-001
C178	CAP-0001-039
C179	CAP-0013-001
C18	CAP-0013-003
C180	CAP-0001-017
C181	CAP-0001-008
C183	CAP-0006-001
C184	CAP-0006-003
C185	CAP-0006-001
C186	CAP-0006-002
C187	CAP-0006-001
C188	CAP-0006-001
C189	CAP-0006-001
C19	CAP-0013-001
C190	CAP-0006-001
C191	CAP-0001-042
C192	CAP-0013-001

CAP, MUL TILAYER	CER DIP . 001
CAP, MLLTILAYER	CER DIP . 001
FACTORY SELECT	
CAP, MLLTILAYER	CER DIP
CAP, MLL I LAYER	CER DIP
CAPACITOR TRIMMER 2-10pf	
CAPACITOR MICA	56p
CAPACITOR TRIMMER 2-20PF	
CAPACITOR TANT	22uf 25 V
CAPACITOR MICA	150pf
CAP, MULTILAYER	CER DIP
CAP, MUL I LLAYER	CER DIP
CAP.ELECT 100UF	RAD
CAPACITOR TANT	22uf 25V
CAP.ELECT 10UF	RAD
CAPACITOR FILM	CK05 . 0047
CAPACITOR MONO	. 014 f 100 V
CAP.ELECT 2.2Uf	f RAD
CAP.ELECT 2.2Ui	RAD
CAPACITOR TANT	10uf
CAP, MLL TILAYER	CER DIP. 1
CAP TANT TUf 16	6-25V
CAP, MLL I L LAYER	CER DIP. 1
CAPACITOR FILM	CK05.1
CAP , MULT I LAYER	CER DIP. 1
CAP, MLLTILAYER	CER DIP. 1
CAP, MLLTILAYER	CER DIP . i
CAPACITOR MONO	.1uf
CAP, MUL I L LAYER	CER DIP. 1
CAP, MLITILAYER	CER DIP. 1
CAPACITOR MONO	.1uf
CAP.ELECT 22UF	RAD
CAP, MLTILAYER	CER DIP. 1
CAP.ELECT 22UF	RAD
CAP, MULTILAYER	CER DIP. 1
CAPACITOR,MICA	$12 p f$
CAPACITOR MONO	.tuf
CAPACITOR NIONO	. O1uf 100V
CAPACITOR MICA	150pf
CAPACITOR MICA	47pf
CAP, MLLT ILAYER	CER DIP
CAP, MULTILAYER	CER DIP . 001
CAP, MULTILAYER	CER DIP . 1
CAP, MLL TILAYER	CER DIP . 01
CAP, MLLTILAYER	CER DIP. 1
CAP, MULTILAYER	CER DIP. 1
CAP, MLI TILAYER	CER DIP. 1
CAPACITOR MONO	. 1 Uf
CAP, MLL TILAYER	CER DIP. 1
CAP, MICA 7.5pf	or DISC 7pf
CAPACITOR MONO	. 1uf

EFFECTIVE 07-14-93
REF DES PART NLM DESCRIPTION

C193	CAP-0031-001	CAP TANT 2.2Uf 16-25V
C194	CAP-0024-001	CAP. MYLAR/FILM .033 25V
C195	CAP-0001-034	CAPACITOR MICA 20pf
C196	CAP-0001-016	CAPACITOR MICA 130pf
C197	CAP-0001-016	CAPACITOR MICA 130pf
C198	CAP-0001-016	CAPACITOR MICA 130pf
C199	CAP-0001-016	CAPACITOR MICA 130pf
C2	CAP-0006-003	CAP,MLTILAYER CER DIP .

REF DES
PART NLM

C7

C70
C71
072
C73
C74
C75
C76
C77
C78
C79
C8
C 80
C81
C 82
C83
C84
C85
C85
C87
C88
C89
C9
C90
C91
C92
C93
C94
C95
C97
C98
C99
CR1
CR10
CR11
CR12
CR13
CR14
CR15
CR16
CR17
Donated by AC5XP

CAP-0006-001
CAP-0037-002
CAP-0037-002
CAP-0037-002
CAP-0013-005
CAP-0037-002
CAP-0037-002
CAP-0037-002
CAP-0037-005
CAP-0013-003
CAP-0001-015
CAP-0013-005
CAP-0037-002
CAP-0012-008
CAP-0037-002
CAP-0037-002
CAP-0027-223
CAP-0031-005
CAP-0013-001
CAP-0037-010
CAP-0037-010
CAP-0001-028
CAP-0006-001
CAP-0031-007
CAP-0013-C03
CAP-0013-005
CAP-0030-005
CAP-0012-008
CAP-0012-009
CAP-0037-003
CAP-0037-003
CAP-0037-002
CAP-0001-028
CAP-0012-005
CAP-0012-009
CAP-0027-682
CAP-0037-002
CAP-0013-001
CAP-0006-004
CAP-0006-004
CAP-0013-001
CAP-0001-017
SEM-0096-002
SEM-0096-007
SEM-0096-007
SEM-0096-007
SEM-0096-007
SEM-0096-007
SEM-0096-007
SEM-0076-001
SEM-0076-001

DESCRIPTION

CAP, MULTILAYER CER DIP . 1
CAP.ELECT 2.2Uf RAD
CAP.ELECT 2.2uf RAD
CAP.ELECT 2. 2 uf RAD
CAPACITOR MONO . 001 uf
CAP.ELECT 2.2uf RAD
CAP.ELECT 2. 2uf RAD
CAP.ELECT 2.2Uf RAD
CAP.ELECT 22UF RAD
CAPACITOR MONO . O1uf 100 V
CAPACITOR MICA 100pf
CAPACITOR MONO . 001 uf
CAP.ELECT 2.2Uf RAD
CAP, MYLAR . 0033uf/100V
CAP.ELECT 2. 2uf RAD
CAP.ELECT 2.2Uf RAD
CAPACITOR FILM CK05 . 022
CAPACITOR TANT 10 Uf 16 V
CAPACITOR MONO . 1uf
CAP. ELECT 47OUF RAD
CAP. ELEET 47OUF RAD
CAPACITOR MICA 200pf CAP, MLLTILAYER CER DIP . 1
CAPACITOR TANT $22 \mathrm{U}^{f} 16 \mathrm{~V}$
CAPACITOR MONO . O1uf 100 V
CAPACITOR MONO . 001 uf
CAPACITOR TANT . 47 Uf 35 V
CAP, MYLAR . $0033 \mathrm{uf} / 100 \mathrm{~V}$
CAP, MYLAR .033Uf/100V
CAP. ELECT 4.7UF RAD
CAP.ELEET 4.7UF RAD
CAP. ELECT 2.2Uf RAD
CAPACITOR MICA 200pf
CAP, MYLAR . O1Uf/50V
CAP, MYLAR . 033uf/100V
CAPACITOR FILM CKO5 . 0068
CAP.ELECT 2. 2uf RAD
CAPACITOR MONO . IUf
CAP, MLLTILAYER CER DIP .047
CAP, MLLTILAYER CER DIP . 047
CAPACITOR MONO . 1uf
CAPACITOR MICA 150pf
KS 1001
DIODE, P.I.N.
DIODE, P.I.N.
DICDE, P.I.N.
DIODE, P.I.N.
DIODE, P.I.N.
DIODE, P.I.N.
DIODE, $1 N 4148$
DIODE, $1 N 4148$

REF DES	PART NLM	DESCRIPTION
CR19	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR2	SEM-0076-001	DIODE, 1N4148
CR20	SEM-0076-001	DIODE, 1N4148
CR2 1	SEM-0076-001	DIODE, 1N4148
CR23	SEM-0080-004	MV209
CR24	SEM-0076-001	DIODE, 1N4148
CR25	SEM-0076-001	DIODE, 1N4148
CR26	SEM-0084-001	LED, RED
CR27	SEM-0083-004	1N4735A ZENER 1 W REG
CR28	SEM-0076-001	DIODE, 1N4148
CR29	SEM-0170-026	IN4736A
CR3	SEM-0076-001	DIODE, 1N4148
CR30	SEM-0083-004	1N4735A ZENER 1 W REG
CR31	SEM-0076-001	DIODE, 1N4148
CR32	SEM-0170-024	1N4744
CR33	SEM-0076-001	DIODE, 1 N4148
CR34	SEM-0076-001	DIODE, 1N4148
CR35	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR36	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR37	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR38	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR4	SEM-0076-001	DIODE, 1N4148
CR5	SEM-0091-001	DIODES 1N3070
CR6	SEM-0091-001	DIODES 1N3070
CR7	SEM-0076-001	DIODE, 1 N4148
CR8	SEM-0096-007	DIODE, P.I.N.
CR9	SEM-0096-007	DIODE, P.I.N.
DIS 1	DIS-0002-001	VF DIS, 8 DIGIT ALPHA
F1	FIL-0005-003	FILTER, 45 MHz PIEZO
F2	FIL-0010-003	6.4MHZ WITH GND PINS
FS	CAP-0001-001	CAPACITOR MICA 10pf
J1	CON-0028-002	HEADER MALE 9 TERM.
J2	50C-0002-016	1 C SOCKET, 16 PIN DIP
J3	CON-0240-080	POST HEADER 8 PIN
14	CON-0004-002	JACK, PHONO PCB
$J 5$	CON-0004-002	JACK, PHONO PCB
JU1	JUM-0002-045	ULMPER, .45" TEFLON
UU2	JUM-0002-045	UUMPER, .45' TEFLON
ЈU3	JLM-0002-045	JUMPER, .45" TEFLON
UU4	ULM-0002-320	ULMPER, 3.20' \#24 TEFLON
UU5	JLM-0002-100	JLMPER, $1^{\prime \prime}$ \#24 TEFLON
L1	(ND-0021-011	INDUCTOR, 4.7uh
L11	\|ND-0020-014	INDUCTOR, 470un CRAMER
L13	\|ND-0021-020	INDUCTOR, 27 un CRAMER
L14	1ND-0021-020	INDUETOR, 27 Uh CRAMER
L15	ASY-0010-11	VCXO COIL 10TWIR12 ON 11-1
L16	\|ND-0020-014	INDUCTOR, 470uh CRAMER
$L 17$	\|ND-0020-014	INDUCTOR, 470uh CRAMER
L18	\|ND-0020-014	INDUCTOR, 470un CRAMER
L2	\| ND-0020-014	INDUCTOR, 470uh CRAMER
Donsated by AC5XP	ASY-0004-10	IND, TOR 10T18-2260n11-1

REF DES
PART NLM
DESCRIPTION

L4	ASY-0004-09
L5	ASY-0004-09
L6	IND-0021-020
L8	ASY-0002-16
OVE1	ASY-0002-16
P10	OVE-0006-001
P13	CON-0240-060
P14	CON-0240-030
P9	CON-0240-020
Q1	CON-0240-030
Q10	SEM-0021-004
Q11	SEM-0004-002
Q12	SEM-0015-001
Q13	SEM-0003-002
Q14	SEM-0003-002
Q15	SEM-0007-002
Q16	SEM-0016-002
Q17	REM-0007-002
Q2	RES
R3 122	RES-00

INDUCTOR, TOROID
INDUCTOR, TOROID
INDUCTOR, 27Uh CRAMER
INDUCTOR
I NDUCTOR
OVEN, CRYSTAL POSISTOR
POST HEADER 6 PIN
POST HEADER 3 PIN
POST HEADER 2 PIN
POST HEADER 3 PIN
VN2222LM 60V FET
2N2907, MPS2907
MPS-A63
MPS5179
MPS5 179
MPS6531
MPS-A18
MPS6531
PN2222A
2N3565
2N3563
MPS6531
MPS6531
2N3565
TIP 32 SILICON POW TRANS
PN2222A
PN2222A
RESISTOR $2201 / 4 \mathrm{~W}$
RESISTOR $6801 / 4 \mathrm{~W}$
RESISTOR 270 1/4W
TRIMMER, 100 91AR100
RESISTOR $8201 / 4 \mathrm{~W}$
RESISTOR $331 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $2201 / 4 \mathrm{~W}$
RESISTOR $4701 / 4 \mathrm{~W}$
RESISTOR $181 / 4 \mathrm{~W}$
RESISTOR 220 1/4W
RESISTOR 220 1/4W
RESISTOR $300 \quad 1 / 4 \mathrm{~W}$
RESISTOR $4701 / 4 \mathrm{~W}$
RESISTOR $2201 / 4 \mathrm{~W}$
RESISTOR $2701 / 4 \mathrm{~W}$
RESISTOR $471 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 220 1/4W
RESISTOR $12 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $181 / 4 \mathrm{~W}$
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $151 / 4 \mathrm{~W}$
RESISTOR $3001 / 4 \mathrm{~W}$
(RED)

R123
RES-0001-180
RES-0001-301
RES-0001-101
RES-0001-750
RES-0001-103
RES-0001-472
RES-0001-680
RES-0001-681
RES-0001-391
RES-0001-103
RES-0001-472
RES-0001-104
RES-0001-561
RES-0001-103
RES-0001-103
RES-0001-333
RES-0001-102
RES-0001-153
RES-0001-222
RES-0001-104
RES-0001-104
RES-0001-560
RES-0001-152
RES-0001-152
RES-0001-330
RES-0001-330
RES-0001-103
RES-0001-103
JLM-0002-045
7Е5-0001-103
RES-0001-152
RES-0001-103
RES-0001-473
RES-0001-472
RES-0001-561
RES-0001-331
RES-0001-022
RES-0001-100
RES-0001-243
RES-0001-122
RES-0001-470
RES-0001-102
RES-0001-102
RES-0001-102
RES-0001-203
RES-0001-105
RES-0001-243
RES-0001-473
RES-0001-222
RES-0001-473
RES-0001-473

RESISTOR $181 / 4 \mathrm{~W}$
RESISTOR 300 1/4W
RESISTOR $1001 / 4 \mathrm{~W}$
RESISTOR, $751 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $681 / 4 \mathrm{~W}$
RESISTOR $6801 / 4 \mathrm{~W}$
RESISTOR 390 1/4W
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 560 1/4W
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $33 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $15 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RES ISTOR 2. $2 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RES ISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 100K $1 / 4 \mathrm{~W}$
RESISTOR $561 / 4 \mathrm{~W}$
RES ISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $331 / 4 \mathrm{~W}$
RESISTOR $331 / 4 W$
RESISTOR 1OK $1 / 4 \mathrm{~W}$
RESISTOR 1OK $1 / 4 \mathrm{~W}$
ULMPER,.45" TEFLON
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR 47 K 1/4W
RESISTOR 4.7K $1 / 4 \mathrm{~W}$
RESISTOR 560 1/4W
RESISTOR $3301 / 4 \mathrm{~W}$
RESISTOR 2.2 1/4 W
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR 24K $1 / 4 \mathrm{~W}$
RES ISTOR $1.2 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 47 1/4W
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RES ISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 2OK $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{M} 1 / 4 \mathrm{~W}$
RESISTOR $24 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 47 K 1/4W
RESISTOR 2.2K 1/4W
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 47 K 1/4W
REF DES
PART NLM
DESCRIPTION

R172
R173
R174
R175
R176
R177
月178
R179
R18
R180
R181
R182
R183
R184
R185
R186
R187
R188
R189
R19
R190
R191
R192
R193
R194
R195
R196
R197
R198
R199
R2
R20
R200
R201
R202
R203
R204
R205
R206
R207
R208
R209
R21
R210
R211
R22
R23
R24
R25
R26
R27
Donated by AC5XP

RES-0001-473
RES-0001-682
RES-0001-682
RES-0001-682
RES-0001-682
RES-0001-334
RES-0001-102
RES-0001-473
RES-0001-681
RES-0001-682
RES-0001-103
RES-0001-103
RES-0001-221
RES-0001-332
RES-0001-103
RES-0001-221
RES-0001-331
RES-0001-102
RES-0001-102
RES-0001-681
RES-0001-470
RES-0001-561
RES-0001-471
RES-0027-502
RES-0001-222
RES-0001-301
RES-0001-103
RES-0001-562
RES-0001-103
RES-0001-391
RES-0001-222
RES-0001-103
RES-0001-104
RES-0001-104
RES-0001-102
RES-0001-102
RES-0001-682
RES-0001-221
RES-0001-102
RES-0001-471
RES-0001-222
RES-0001-102
RES-0001-681
RES-0001-122
RES-0001-510
RES-0001-681
RES-0001-180
RES-0001-222
RES-0001-301
RES-0001-301
RES-0001-100

RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 330K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 680 1/4W
RESISTOR 6.8K 1/4W
RESISTOR 1OK $1 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $2201 / 4 \mathrm{~W}$
RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR 220 1/4W
RESISTOR $330 \quad 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6801 / 4 \mathrm{~W}$
RESISTOR 47 1/4W
RESISTOR 560 1/4W
RESISTOR 470 1/4W
TRIMMER,5K
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR 300 1/4W
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $5.6 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR 390 1/4W
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR 1OK $1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 100K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 K 1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 220 1/4W
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 470 1/4W
RESISTOR 2.2K 1/4W
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $680 \quad 1 / 4 \mathrm{~W}$
RESISTOR 1.2K 1/4W
$510 H \mathrm{M}, 1 / 4 \mathrm{~W}$ CARBON FILM
RESISTOR $6801 / 4 W$
RESISTOR $181 / 4 \mathrm{~W}$
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR 300 1/4W
RESISTOR 10 1/4W

EFFECTIVE 07-14-93

REF DES
PART NLM
DESCRIPTION

R28	RES-0001-153	RESISTOR 15K 1/4W
R29	RES-0027-103	TRIMMER, 10K
R3	RES-0001-681	RESISTOR 680 1/4W
R30	RES-0027-103	TRIMMER, 10 K
R31	RES-0001-432	RESISTOR 4.3K 1/4W
R32	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R33	RES-0001-101	RESISTOR $1001 / 4 \mathrm{~W}$
R34	RES-0001-272	RESISTOR 2.7K $1 / 4 \mathrm{~W}$
R35	RES-0001-104	RESISTOR 100K $1 / 4 \mathrm{~W}$
R36	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R37	RES-0001-563	RESISTOR 56K $1 / 4 \mathrm{~W}$
R38	RES-0001-471	RESISTOR $4701 / 4 \mathrm{~W}$
R39	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R4	RES-0001-681	RESISTOF $6801 / 4 \mathrm{~W}$
R40	RES-0001-104	RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
R41	RES-0001-124	RESISTOR, $120 \mathrm{~K} 1 / 4 \mathrm{~W}$
R42	RES-0001-334	RESISTOR $330 \mathrm{~K} 1 / 4 \mathrm{~W}$
843	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R44	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R45	RES-0001-393	RESISTOR $39 \mathrm{~K} 1 / 4 \mathrm{~W}$
R46	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R47	RES-0001-223	RESISTOR 22K $1 / 4 \mathrm{~W}$
R48	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R49	RES-0001-224	RESISTOR 220K $1 / 4 \mathrm{~W}$
R5	RES-0001-123	RES ISTOR 12K 1/4W
R50	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R5 1	RES-0001-224	RESISTOR 220K $1 / 4 \mathrm{~W}$
R52	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R53	RES-0001-470	RESISTOR $471 / 4 \mathrm{~W}$
A54	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R55	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R56	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R5 7	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R58	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
$R 59$	RES-0001-102	RESISTOR 1K $1 / 4 \mathrm{~W}$
R6	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R60	RES-0001-331	RESISTOR $3301 / 4 \mathrm{~W}$
R61	RES-0001-681	RESISTOR 680 1/4W
R62	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R63	RES-0001-103	RESISTOR 1OK $1 / 4 \mathrm{~W}$
R64	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R65	RES-0001-273	RESISTOR $27 \mathrm{~K} 1 / 4 \mathrm{~W}$
R66	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R67	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R68	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R69	RES-0001-822	RESISTOR 8.2K $1 / 4 \mathrm{~W}$
R7	JUM-0002-045	JUMPER, $45^{\prime \prime}$ TEFLON
R70	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R71	RES-0001-104	RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
R72	RES-0001-221	RESISTOR $2201 / 4 \mathrm{~W}$
R73 Donated by AC5XP	RES-0001-068	RESISTOR, $6.81 / 4 \mathrm{~W}$

REF DES

PART NLM

R74	RES-0001-012	RESISTOR $1.21 / 4 \mathrm{~W}$
R75	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R76	RES-0001-621	RESISTOR 620 1/4W
R77	RES-0001-332	RESISTOR 3.3K 1/4W
R78	RES-0001-392	RESISTOR 3.9K 1/4W
R79	RES-0001-473	RESISTOR 47K 1/4W
R8	RES-0001-472	RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
R80	RES-0027-103	TRIMMER, 10K
R81	RES-0001-223	RESISTOR $22 \mathrm{~K} 1 / 4 \mathrm{~W}$
R82	RES-0001-332	RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
R83	RES-0001-332	RESISTOR 3.3K 1/4W
R84	RES-0001-332	RESISTOR 3.3K $1 / 4 \mathrm{~W}$
R85	RES-0001-473	RESISTOR 47K $1 / 4 \mathrm{~W}$
R86	RES-0001-683	RESISTOR 68K $1 / 4 \mathrm{~W}$
R87	RES-0001-682	RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
R88	RES-0001-333	RESISTOR $33 \mathrm{~K} 1 / 4 \mathrm{~W}$
R89	RES-0001-272	RESISTOR $2.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
R9	RES-0001-222	RESISTOR 2.2K 1/4W
$R 90$	RES-0001-272	RESISTOR $2.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
R91	RES-0001-472	RESISTOR 4.7K 1/4W
R92	RES-0001-222	RESISTOR 2.2K $1 / 4 \mathrm{~W}$
R93	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R94	RES-0001-243	RESISTOR $24 \mathrm{~K} 1 / 4 \mathrm{~W}$
R95	RES-0001-472	RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
R96	RES-0001-681	RESISTOR $6801 / 4 \mathrm{~W}$
R97	RES-0001-682	RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
R98	RES-0001-912	RESISTOR 9.1K $1 / 4 \mathrm{~W}$
R99	RES-0001-270	RESISTOR $271 / 4 \mathrm{~W}$
RN1	RES-0028-473	RESISTOR NETWORK 47 K 10 PIN
RN2	RES-0028-473	RESISTOR NETWORK 47 K 10 PIN
RN3	RES-0028-473	RESISTOR NETWORK 47 K 10 PIN
RT:	THE-0002-001	THERMISTOR, 100 OHM , D73,NTC
T1	ASY-0010-07	7 TURN TRANSFORMER
T10	ASY-0010-07	7 TURN TRANSFORMER
T2	TRA-0011-001	TRANS VIOLET
T3	ASY-0010-07	7 TURN TRANSFORMER
T4	TRA-0005-001	TRANSFORMER, BLK
T5	ASY-0222-TT5	INDUCTOR, T TRIF O ON \#43
T6	ASY-0010-07	7 TURN TRANSFORMER
T7	TRA-0011-001	TRANS VIOLET
T8	TRA-0011-001	TRANS VIOLET
T9	ASY-0209-T1M	TRANSFORMER
U1	SEM-0101-001	MC1350P
U11	SEM-0170-004	MC145156 (RED)
U12	SEM-0162-002	MC3393 (RED)
U13	SEM-0170-015	LM78L05AWC
414	SEM-0155-005	$74 \mathrm{C90}$ (REDO
U15	SEM-0170-007	DM7406
U16	SEM-0170-003	MC145155 (RED)
U17	SEM-0143-086	QUAD GATE 74HC86
$\cup 1750$	SOC-0002-014	1 C SOCKET, 14 PIN DIP

REF DES	PART NLM	DESCRIPTION
418	SEM-0143-390	HI SPEED CMOS LOGIC
U2	SEM-0101-001	MC1350P
U20	SEM-0161-001	6805E2E (9)
U21	SEM-0143-373	74 HC 373 OCTAL D LATCH
U24	SEM-0170-022	10937 (RED)
U25A	SEM-0170-013	CD4041UBF (RED)
U25B	SEM-0170-013	CD4041UBF (RED)
U2550	SOC-0002-014	1 C SOCKET, 14 PIN DIP
U26	SEM-0170-009	TL497ACN
U27	SEM-0143-010	74HC10 (RED)
U28	SEM-0143-132	74HC132 (RED)
U29	SEM-0109-004	7808
U3	SEM-0154-007	LM387 LOW NOISE PREAMP
$\cup 30$	SEM-0109-001	UA7805CKC 5V REGULATOR
U32	SEM-0102-001	MC3340P
$\cup 4$	SEM-0140-066	4066 (RED)
U5	SEM-0154-001	LM324 QUAD OPAMP
U6	SEM-0153-003	TDA2002H
U7	SEM-0154-003	LM358 DUAL OP AMP
U8	SEM-0154-001	LM324 QUAD OPAMP
UK	JLM-0002-045	JUMPER, 45" TEFLON
Y2	CRY-0006-011	CRYSTAL 38.618 MHz

REF DES PART NLM DESCRIPTION

A1	MIX-0002-001	DBL BAL MIXER	
A2	M1X-0002-001	DBL BAL MIXER	
A3	MIX-0002-001	DBL BAL MIXER	
C 1	CAP-0006-001	CAP,MLLTILAYER	CER DIP . 1
C10	CAP-0001-015	CAPACITOR MICA	100pf
C100	CAP-0013-001	CAPACITOR MONO	. 14 f
C101	CAP-0013-001	CAPACITOR MONO	.1uf
C102	CAP-0013-006	CAP.MONO . 047 UF	
C103	CAP-0013-006	CAP.MONO . 047 JF	
C104	CAP-0037-010	CAP.ELECT 470UF	RAD
C105	CAP-0037-010	CAP.ELECT 470UF	Rad
C106	CAP-0013-001	CAPACITOR MONO	. 1uf
C108	CAP-0013-005	CAPACITOR MONO	. 001 uf
C109	CAP-0006-001	CAP,MLLTILAYER	CER DIP . 1
C 11	CAP-0001-003	CAPACITOR MICA	22pf
C110	CAP-0006-001	CAP, MLLLTILAYER	CER DIP . 1
C111	CAP-0013-003	CAPACITOR MONO	. 01uf 100V
0112	CAP-0013-003	CAPACITOR MONO	. 01uf 100V
C113	CAP-0001-012	CAPACITOR MICA	68pf
C115	CAP-0001-007	CAPACITOR MICA	36 pf
C116	CAP-0006-004	CAP,MLLTILAYER	CER DIP . 047
C117	CAP-0001-015	CAPACITOR MICA	100pf
C118	CAP-0001-006	CAPACITOR MICA	33pf
0119	CAP-0002-018	CAP 4.7PF TUB-C	Ceramic 10\%
C 12	CAP-0001-004	CAPACITOR MICA	27pf
C120	CAP-0002-016	CAP 3.3PF TUB-C	CERAMIC 10\%
C121	CAP-0006-004	CAP,MLTILAYER	CER DIP . 047
C 122	CAP-0025-002	CAPACITOR TRIM	MER 2-10pf
C123	CAP-0037-002	CAP.ELECT 2.2uf	RAD
C124	CAP-0006-003	CAP,MLLTILAYER	CER DIP . 001
C125	CAP-0001-030	CAPACITOR MICA	$360 p f$
C126	CAP-0013-001	CAPACITOR MONO	.1uf
C127	CAP-0013-003	CAPACITOR MONO	. 014 f 100V
C128	CAP-0013-001	CAPACITOR MONO	. 14 f
C129	CAP-0013-001	CAPACITOR MONO	. 14 f
C13	CAP-0001-040	CAP,MICA 6.2pf	or DISC 6 pf
C130	CAP-0001-018	CAPACITOR MICA	160pf
C131	CAP-0012-003	CAP, MYLAR . 001	15uf / 100 V
C132	CAP-0006-001	CAP,MLLTILAYER	CER DIP . 1
C133	CAP-0001-024	CAPACITOR MICA	560pt
C134	CAP-0006-002	CAP,MLTILAYER	CER DIF . 01
C135	CAP-0006-001	CAP,MLTILAYER	CER DIP . 1
C136	CAP-0027-474	CAPACITOR FILM	CK05 . 47
C137	CAP-0027-104	CAPACITOR FILM	CK05 . 1
0139	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C14	CAP-0025-002	CAPACITOR TRIM	MER 2-10pf
C140	CAP-0006-002	CAP,MULTILAYER	CER DIP . 01
C141	CAP-0006-001	CAP,MULTILAYER	CER DIP
C142	CAP-0013-001	CAPACITOR MONO	. 1uf
C143	CAP-0013-001	CAPACITOR MONO	. 14 f
C144	CAP-0006-00 1	CAP,MLLTILAYER	CER DIP . 1

EFFECTIVE 03-21-94

REF DES	PART NLM	DESCRIPTION	
C145	CAP-0013-005	CAPACITOR MONO	. 001 uf
C146	CAP-0006-003	CAP, MLL ILLAYER	CER DIP . 001
C147	CAP-0000-000	FACTORY SELECT	
C148	CAP-0006-001	CAP, MLL ILLAYER	CER DIP . 1
C149	CAP-0006-001	CAP, MULTILAYER	CER DIP. 1
C15	CAP-0025-002	CAPACITOR TRIMME	MER 2-10pf
C150	CAP-0001-010	CAPACITOR MICA	56pf
C151	CAP-0025-001	CAPACITOR TRIMME	IER 2-20PF
C152	CAP-0030-009	CAPACITOR TANT	22uf 25V
C153	CAP-0001-017	CAPACITOR MICA	150pf
C154	CAP-0006-001	CAP, MULTILAYER	CER DIP. 1
C155	CAP-0006-001	CAP, MLL ILLAYER	CEA DIP. 1
C156	CAP-0037-007	CAP.ELECT 100UF	RAD
C157	CAP-0030-009	CAPACITOR TANT	22uf 25V
C158	CAP-0037-006	CAP. ELECT 10UF	RAD
C159	CAP-0027-472	CAPACITOR FILM	CK05 . 0047
C16	CAP-0013-003	CAPACITOR MONO	.01uf 100V
C160	CAP-0037-002	CAP.ELECT 2.2Uf	RAD
C161	CAP-0037-002	CAP.ELECT 2.2Uf	RAD
C162	CAP-0030-007	CAPACITOR TANT	10uf
C163	CAP-0006-001	CAP, MUL I LAYER	CER DIP . 1
C164	CAP-0031-008	CAP TANT IUf 16	-25V
C165	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C166	CAP-0027-104	CAPACITOR FILM	CK05.1
C167	CAP-0006-001	CAP,MLTILAYER	CER DIP . 1
C168	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C169	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C17	CAP-0013-001	CAPACITOR MONO	.1uf
C170	CAP-0006-001	CAP, MLL ILAYER	CER DIP . 1
C171	CAP-0006-001	CAP, MLL IILAYER	CER DIP. 1
C172	CAP-0013-001	CAPACITOR MONO	. 1uf
C173	CAP-0037-005	CAP.ELECT 22UF	RAD
C174	CAP-0006-001	CAP, MULT I LAYER	CER DIP . 1
C175	CAP-0037-005	CAP.ELECT 22UF	RAD
C177	CAP-0006-001	CAP, MULTILAYER	CER DIP. 1
C178	CAP-0001-039	CAPACITOR,MICA	$12 p f$
C179	CAP-0013-001	CAPACITOR MONO	. 1uf
C18	CAP-0013-003	CAPACITOR MONO	. 01uf 100V
C180	CAP-0001-017	CAPACITOR MICA	150pf
0181	CAP-0001-008	CAPACITOR MICA	47pf
C183	CAP-0006-001	CAP, MULTILAYER C	CER DIP . 1
C184	CAP-0006-003	CAP, MULTILAYER	CER DIP . 001
C185	CAP-0006-001.	CAP,MLTILAYER	CER DIP . 1
C186	CAP-0006-002	CAP,MULTILAYER	CER DIP . 01
C187	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C188	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C189	CAP-0006-001	CAP, MLLTILAYER	CER DIP. 1
C19	CAP-0013-001	CAPACITOR MONO	. 1uf
C190	CAP-0006-001	CAP, MLLTILAYER	CER DIP . 1
C191	CAP-0001-042	CAP,MICA 7.5pf or	or DISC 7pf
C192	CAP-0013-001	CAPACITOR MONO	.1uf

EFFECTIVE 03-21-94

REF DES
PART NLM
DESCRIPTION

C60	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C61	CAP-0037-002	CAP.ELECT 2.2Uf RAD
C62	CAP-0037-002	CAP.ELECT 2.2uf RAD
C63	CAP-0037-002	CAP.ELECT 2.2uf RAD
C64	CAP-0013-005	CAPACITOR MONO . 001 uf
C65	CAP-0037-002	CAP.ELECT 2.2Uf RAD
C66	CAP-0037-002	CAP.ELECT 2.2uf RAD
C67	CAP-0037-002	CAP.ELECT 2.2Uf RAD
C68	CAP-0037-005	CAP.ELECT 22UF RAD
C69	CAP-0013-003	CAPACITOR MONO . O1uf 100V
C7	CAP-0001-015	CAPACITOR MICA 100pf
C70	CAP-0013-005	CAPACITOR MONO . 001 uf
C71	CAP-0037-002	CAP.ELEET 2.2Uf RAD
072	CAP-0012-008	CAP, MYLAR . $0033 \mathrm{lf} / 100 \mathrm{~V}$
C73	CAP-0037-002	CAP.ELECT 2.2uf RAD
C74	CAP-0037-002	CAP.ELECT 2.2uf RAD
C75	CAP-0027-223	CAPACITOR FILM CK05 . 022
076	CAP-0031-005	CAPACITOR TANT 10uf 16 V
C77	CAP-0013-001	CAPACITOR MONO . 14 f
C78	CAP-0037-010	CAP.ELECT 470UF RAD
C79	CAP-0037-010	CAP.ELECT 470UF RAD
C8	CAP-0001-028	CAPACITOR MICA 200pf
C80	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C81	CAP-0031-007	CAPACITOR TANT 22uf 16V
C82	CAP-0013-003	CAPACITOR MONO . O1uf ioov
C83	CAP-0013-005	CAPACITOR MONO . 001 uf
C84	CAP-0030-005	CAPACITOR TANT . 47 Uf 35 V
C85	CAP-0012-008	CAP, MYYLAR .0033uf/100V
C86	CAP-0012-009	CAP, NYLAR .033uf/100V
C87	CAP-0037-003	CAP. ELECT 4.7UF RAD
C88	CAP-0037-003	CAP.ELECT 4.7UF RAD
C89	CAP-0037-002	CAP.ELECT 2.2uf RAD
C9	CAP-0001-028	CAPACITOR MICA 200pf
C90	CAP-0012-005	CAP, MYLAR . $014 \mathrm{f} / 50 \mathrm{~V}$
C9:	CAP-0012-009	CAP, MYLAR . $033 \mathrm{uf} / 100 \mathrm{~V}$
C92	CAP-0027-682	CAPACITOR FILM CKO5 . 0068
C93	CAP-0037-002	CAP.ELECT 2.2uf RAD
C94	CAP-0013-00才	CAPACITOR MONO . 1 Uf
C95	CAP-0006-004	CAP, MULTILAYER CER DIP . 047
C97	CAP-0006-004	CAP, MULTILAYER CER DIP . 047
C98	CAP-0013-001	CAPACITOR MONO . 1 L
C99	CAP-0001-017	CAPACITOR MICA 150pf
CR1	SEM-0096-002	KS1001
CR10	SEM-0096-007	DIODE, P.I.N.
CR11	SEM-0096-007	DIODE, P.I.N.
CR12	SEM-0096-007	DIODE, P.I.N.
CR13	SEM-0096-007	DIODE, P.I.N.
CR14	SEM-0096-007	DIODE, P.I.N.
CR15	SEM-0096-007	DIODE, P.I.N.
$\xrightarrow[\text { CR16 }]{ }$	SEM-0076-001	DIODE, 1N4148
Donateghtactix	SEvi-0076-001	DIODE, 1N4148

EFFECTIVE 03-21-94

REF DES
PART NLM
DESCRIPTION

CR19	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR2	SEM-0076-001	DIODE, 1N4148
CR20	SEM-0076-001	DIODE, 1N4148
CR21	SEMi-0076-001	DIODE, IN4148
CR23	SEM-0080-004	MV209
CR24	SEMi-0076-001	DIODE, 1N4148
CR25	SEM-0076-001	DIODE, 1N4148
OR26	SEM-0084-001	LED, RED
CR27	SEM-0083-004	IN4735A ZENER 1 W REG
CR28	SEM-0076-001	DIODE, 1N4148
CR29	SEM-0170-026	IN4736A
CR3	SEM-0076-001	DIODE, 1N4148
CR30	SEM-0083-004	1N4735A ZENER 1 W REG
CRO 1	SEM-0076-001	DIODE, IN4148
CR32	SEIM-0170-024	1N4744
CR33	SEM-0076-001	DIODE, 1 N4 148
CR34	SEMi-0076-001	DIODE, IN4148
CR35	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR36	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR37	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR38	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR39	SEni-0076-001	DIODE, IN4148
CR4	SEM-0076-00:	DIODE, 1N4148
CAS	SEVI-0091-001	DIODES 1N3070
CR6	SEM-0091-001	DIODES 1N3070
CR7	SEVi-0076-001	DIODE, 1N4148
CR8	SEM-0096-007	DIODE, P.I.N.
CRO	SEM-0096-007	DIODE, P.I.N.
DIS1	Dis-0002-001	VF DIS, 8 DIGIT ALPHA
F9	FiL-0005-003	FILTER, 45 MHZ PIEZO
F2	FiL-0010-003	6. 4 MH 2 L WITH GND PINS
FS	CAP-0001-001	CAPACITOR MICA 10p ${ }^{\text {A }}$
Ji	CON-0028-002	HEADER MALE g TERM.
J2	SOC-0002-016	$1 C$ SOCKET, 16 PIN DIP
J3	CON-0240-080	POST HEADER 8 PIN
14	CON-0004-002	JACK, PHONO PCB
$\checkmark 5$	CON-0004-002	JACK, PHONO PCB
JU9	ULN-0002-045	JLMPER, $45^{\prime \prime}$ TEFLON
ULS	ULM-C002-045	JUMPER, .45" TEFLON
い	ULM-0002-045	JLMPER, $45^{\prime \prime}$ TEFLON
U4	ULM-0002-320	ULMPER, 3.20" \#24 TEFLON
U 4	ULM-0002-100	JUMPER, 1" \#24 TEFLON
L1	1ND-0021-011	INDUCTOR, 4.7un
L11	1ND-0020-014	INDUCTOR, 470un CRAMER
$L 13$	IND-0021-020	INDUCTOR, 27 uh CRAMER
L14	(ND-0021-020	INDUCTOR, 27 uh CRAMER
L15	ASY-0010-10	VCXO COIL TOTWIR12 ON 11-1
L16	IND-0020-014	INDUCTOR, 470un CRAMER
L17	IND-0023-471	INDUCTOR, HIGH CURRENT 470UH
L18	1ND-0020-014	INDUCTOR, 470uh CRAMER
Donated by AC5XP	1ND-0020-014	INDUCTOR, 470 un CRAMER

REF DES
PART NLM

RES-0001-301
R122
RES-0001-180
R123
RES-0001-301
R125
R126
R127
R128
$R 129$
R13
R130
R131
$R 132$
R133
R134
R135
R136
R137
$R 138$
R14
R140
R141
R142
$R 143$
R144
R145
R146
R147
8148
R149
R15
R150
$R 151$
R152
R153
R154
R155
R156
R159
R16
R160
R161
R162
R163 RES-0001-102
R164 RES-0001-102
R165 RES-0001-102
R166 RES-0001-203
R167 RES-0001-105
R168 RES-0001-243
R169 RES-0001-473
R17
Donaled bivac5xp

RES-0001-222
RES-0001-473

DESCRIPTION

RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR 18 1/4W
RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR $1001 / 4 \mathrm{~W}$
RESISTOR, $751 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $681 / 4 \mathrm{~W}$
RESISTOR $6801 / 4 \mathrm{~W}$
RESISTOR $3901 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 560 1/4W
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR 33K 1/4W
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $15 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $561 / 4 \mathrm{~W}$
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $331 / 4 \mathrm{~W}$
RESISTOR $331 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
JUMPER,.45" TEFLON
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $5601 / 4 \mathrm{~W}$
RESISTOR $3301 / 4 \mathrm{~W}$
RESISTOR $2.21 / 4 \mathrm{~W}$
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR $24 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 1.2K $1 / 4 \mathrm{~W}$
RESISTOR $471 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 20K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{M} 1 / 4 \mathrm{~W}$
RESISTOR 24K $1 / 4 \mathrm{~W}$
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$

R171
R172
R173
R174
R175
R176
R177
R178
R179
R18
R180
R181
R182
R183
R184
R185
R186
R187
R188
7189
R19
R190
R191
R192
R193
R194
R195
R196
R197
R198
R199
h2
R20
R200
R201
H202
R203
R204
R205
R206
R207
R208
R209
R21
R210
R211
R212
R213
R214
R215
R2 16

RES-0001-473
RES-0001-473
RES-0001-682
RES-0001-682
RES-0001-682
RES-0001-682
RES-0001-334
RES-0001-102
RES-0001-473
RES-0001-681
RES-0001-682
RES-0001-103
RES-0001-103
RES-0001-221
RES-0001-332
RES-0001-103
RES-0001-221
RES-0001-331
RES-0001-102
FEES-0001-102
RES-0001-681
RES-0001-470
RES-0001-561
RES-0001-471
RES-0027-502
RES-0001-222
RES-0001-301
RES-0001-103
RES-0001-562
RES-0001-103
RES-0001-391
RES-0001-222
RES-0001-103
RES-0001-104
RES-0001-104
RES-0001-102
RES-0001-102
RES-0001-682
RES-0001-221
RES-0001-102
RES-0001-471
RES-0001-222
RES-0001-102
RES-0001-681
RES-0001-122
RES-0001-510
RES-0010-101
RES-0010-104
RES-0010-223
RES-0010-333
RES-0010-222

RESISTOR $47 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RESISTOR 47K $1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 6.8K 1/4W
RESISTOR $6.8 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RESISTOR 6.8K 1/4W
RESISTOR 330K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6801 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $2201 / 4 \mathrm{~W}$
RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $2201 / 4 \mathrm{~W}$
RESISTOR $3301 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6801 / 4 \mathrm{~W}$
RESISTOR $471 / 4 W$
RESISTOR 560 i/4W
RESISTOR $470 \quad 1 / 4 \mathrm{~W}$
TRIMMER,5K
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $5.6 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $3901 / 4 \mathrm{~W}$
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RES ISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 100K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 220 1/4W
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $470 \quad 1 / 4 \mathrm{~W}$
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
RESISTOR iK $1 / 4 \mathrm{~W}$
RESISTOR $680 \quad 1 / 4 \mathrm{~W}$
RESISTOR $1.2 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
$510 H M, 1 / 4 W$ CARBON FILM
RESISTOR, 100 OHM
RESISTOR, 100 K OHM
RESISTOR, 22 K OHM
RESISTOR, 33 K OHM
RESISTOR, 2.2K OHM

PART NLM
DESCRIPTION

R217	RES-0010-102	RESISTOR,	1 K OHM
R22	RES-0001-681	RESISTOR	680 1/4W
R23	RES-0001-180	RESISTOR	18 1/4W
R24	RES-0001-222	RESISTOR	2.2K $1 / 4 \mathrm{~W}$
R25	RES-0001-301	RESISTOR	$3001 / 4 \mathrm{~W}$
R26	RES-0001-301	RESISTOR	$3001 / 4 W$
R27	RES-0001-100	RESISTOR	$10.1 / 4 \mathrm{~W}$
R28	RES-0001-153	RESISTOR	$15 \mathrm{~K} 1 / 4 \mathrm{~W}$
R29	RES-0027-103	TRIMMER,	10K
R'3	RES-0001-681	RESISTOR	680 1/4W
R30	RES-0027-103	TRIMMER,	10K
P31	RES-0001-432	RESISTOR	4.3K $1 / 4 \mathrm{~W}$
R32	RES-0001-103	RESISTOR	10K $1 / 4 \mathrm{~W}$
R33	RES-0001-101	RESISTOR	$1001 / 4 \mathrm{~W}$
R34	RES-0001-272	RESISTOR	2.7K $1 / 4 \mathrm{~W}$
R35	RES-0001-104	RESISTOR	100K 1/4W
R36	RES-0001-103	RESISTOR	10K 1/4W
R37	RES-0001-563	RESISTOR	56K 1/4W
R38	RES-0001-471	RESISTOR	470 1/4W
R39	RES-0001-103	RESISTOR	10K $1 / 4 \mathrm{~W}$
R4	RES-0001-681	RESISTOR	680 1/4W
R40	RES-0001-104	RESISTOR	100K 1/4W
R41	RES-0001-124	RESISTOR,	120K 1/4W
F42	RES-0001-334	RESISTOR	$330 \mathrm{~K} 1 / 4 \mathrm{~W}$
R43	RES-0001-103	RESISTOR	10K 1/4W
844	RES-0001-103	RESISTOR	10K 1/4W
R45	RES-0001-393	RESISTOR	$39 \mathrm{~K} 1 / 4 \mathrm{~W}$
R46	RES-0001-103	RESISTOR	10K 1/4W
R47	RES-0001-223	RESISTOR	$22 \mathrm{~K} 1 / 4 \mathrm{~W}$
848	RES-0001-103	RESISTOR	10K 1/4W
R49	RES-0001-224	RESISTOR	220K 1/4W
R5	RES-000 $1-123$	RESISTOR	$12 \mathrm{~K} 1 / 4 \mathrm{~W}$
R50	RES-0001-103	RESISTOR	10K 1/4W
R5 1	RES-0001-224	RESISTOR	220K 1/4W
R52	RES-0001-103	RESISTOR	10K 1/4W
R53	RES-0001-470	RESISTOR	$471 / 4 W$
R54	RES-0001-103	RESISTOR	10K $1 / 4 \mathrm{~W}$
R55	RES-0001-103	RESISTOR	10K 1/4W
R56	RES-0001-103	RESISTOR	$10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R57	RES-0001-103	RESISTOR	10K $1 / 4 \mathrm{~W}$
R58	RES-0001-103	RESISTOR	10K 1/4W
R59	RES-0001-102	RESISTOR	$1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R6	RES-0001-100	RESISTOR	$101 / 4 \mathrm{~W}$
R60	RES-0001-331	RESISTOR	$3301 / 4 W$
R61	RES-0001-681	RESISTOR	$6801 / 4 \mathrm{~W}$
R62	RES-0001-103	RESISTOR	10K 1/4W
R63	RES-0001-103	RESISTOR	10K 1/4W
R64	RES-0001-103	RESISTOR	10K 1/4W
R65	RES-0001-273	RESISTOR	27K 1/4W
R66	RES-0001-103	RESISTOR	10K $1 / 4 \mathrm{~W}$
	RES-0001-102	RESISTOR	1K 1/4W

REF DES
PART NLM

DESCRIPTION

R68	RES-0001-102	RESISTOR $1 \mathrm{~K}: / 4 \mathrm{~W}$
R69	RES-0001-822	RESISTOR $8.2 \mathrm{~K} 1 / 4 \mathrm{~W}$
R7	ULM-0002-045	UUMPER, .45" TEFLON
R70	RES-0001-100	RESISTOR $101 / 4 W$
R71	RES-0001-104	RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
R1\%	RES-0001-221	RESISTOR $2201 / 4 \mathrm{~W}$
R73	RES-0001-068	RESISTOR, $6.81 / 4 \mathrm{~W}$
R74	RES-0001-612	RESISTOR $1.21 / 4 \mathrm{~W}$
R75	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
A76	RES-000t-621	RESISTOR $6201 / 4 \mathrm{~W}$
R77	RES-0001-332	RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
R78	RES-0001-392	RESISTOR 3.9K $1 / 4 \mathrm{~W}$
$R 79$	RES-0001-473	RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
R8	RES-0001-472	RESISTOR 4.7K 1/4W
P80	RES-0027-103	TRIMMER, IOK
Ret	RES-000:-223	RESISTOR $22 \mathrm{~K} 1 / 4 \mathrm{~W}$
R8¢	RES-0001-332	RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
R83	RES-0001-332	RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
R84	RES-0001-332	RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
R85	RES-0001-473	RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
R86	RES-0001-683	RESISTOR 68K $1 / 4 \mathrm{~W}$
287	RES-0001-682	RESISTOR 6.8K $1 / 4 \mathrm{~W}$
$R 86$	RES-0001-333	RESISTOR $33 \mathrm{~K} 1 / 4 \mathrm{~W}$
R89	RES-0001-272	RESISTOR 2.7K $1 / 4 \mathrm{~W}$
R9	RES-0001-222	RESISTOR 2.2K $1 / 4 \mathrm{~W}$
790	RES-0001-272	RESISTOR $2.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
891	RES-0001-472	RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
$R 92$	RES-0001-222	RESISTOR 2.2K $1 / 4 \mathrm{~W}$
893	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R94	RES-0001-243	RESISTOR $24 \mathrm{~K} 1 / 4 \mathrm{~W}$
$R 95$	RES-0001-472	RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$
$R 96$	RES-0001-681	RESISTOR $6801 / 4 \mathrm{~W}$
$R 97$	RES-0001-682	RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
ค98	RES-0001-912	RESISTOR 9.1K $1 / 4 \mathrm{~W}$
$R 99$	RES-0001-270	RESISTOR $271 / 4 \mathrm{~W}$
RN1	RES-0028-473	RESISTOR NETWORK 47 K 10 PIN
RN2	RES-0028-473	RESISTOR NETWORK 47 K 10 PIN
RN3	RES-0028-473	RESISTOR NETWORK 47 K 10 PIN
RTI	THE-0002-001	THERMISTOR, 100 OHM , D73, NTC
T	ASY-0010-07	7 TURN TRANSFORMER
T10	ASY-0010-07	7 TURN TRANSFORMER
T2	TRA-0011-001	TRANS VIOLET
T3	ASY-0010-07	7 TURN TRANSFORMER
T4	TRA-0005-001	TRANSFORNER, BLK
T5	ASY-0222-T15	INDUCTOR, T TRIFI ON \#43
T6	ASY-0010-07	7 TURN TRANSFORMER
T7	TRA-0011-001	TRANS VIOLET
T8	TRA-0011-001	TRANS VIOLET
T9	ASY-0209-T1M	TRANSFORMER
U1	SEM-0101-001	MC1350P
d by AC5XP	SEMi-0170-004	MC145156 (RED)

REF DES	PART NLM	DESCRIPTION
412	SEM-0162-003	MB504P DUAL MOD PRESCALER
U13	SEM-0170-015	LM78L05AWC
U14	SEM-0155-005	74C90 4-BIT DECADE CNTR
415	SEM-0170-007	DM7406
$\cup 16$	SEM-0170-003	MC145155 (RED)
417	SEM-0143-086	QUAD GATE 74HC86
01750	SOC-0002-014	IC SOCKET, 14 PIN DIP
$\cup 18$	SEM-0143-390	HI SPEED OMOS LOGIC
U2	SEM-0101-001	MC1350P
U20	SEM-0161-001	MC146805E2 8-BIT MPU
U21	SEM-0143-373	$74 \mathrm{HC373}$ OCTAL D LATCH
U24	SEM-0170-022	10937 (RED)
U25A	SEM-0170-013	CD4041UBF (RED)
U25B	SEMT-0170-013	CD4041UBF (RED)
U2550	S0c-0002-014	IC SOCKET, 14 PIN DIP
U26	SEM-0170-009	TL497ACN
U27	SEM-0143-010	74HC10 (RED)
U28	SEM-0143-132	74HC132 (RED)
U29	SEM-0109-004	7808 (
U3	SEM-0154-007	LM387 DUAL LO NOISE PREAMP
U30	SEM-0109-001	UA7805CKC 5V REGULATOR
$\cup 32$	SEM-0102-001	MC3340p
$\cup 4$	SEM-0140-066	4066 (RED)
U5	SEM-0154-001	LM324 QUAD OPAMP
46	SEM-0153-003	TDA2002H
U7	SEM-0154-003	LIVI358 DUAL OP AMP
U8	SEM-0154-001	LM324 QUAD OPAMP
UK	JUM-0002-045	JUMPER, .45" TEFLON
Y2	CRY-0006-011	CRYSTAL 38.618 MHz

EFFECTIVE 01-31-92
REF DES
PART NUM
DESCRIPTION

C10	CAP-0003-023	CAPACITOR DM19	130pf
C100	CAP-0006-001	CAP, MLL TILAYER	CER DIP
C101	CAP-0037-009	ELECT 1000uf RA	AD . $3 \mathrm{~L} / \mathrm{S}$
C102	CAP-0006-001	CAP, MLLTILAYER	CER DIP
C103	CAP-0006-001	CAP, MLL TILAYER	CER DIP
C104	CAP-0003-034	CAPICITOR DM19	18pf
C105	CAP-0003-028	CAPACITOR DM19	300pf
C106	CAP-0003-021	CAPACITOR DM19	200pf
C107	CAP-0003-021	CAPACITOR DM19	200pf
C108	CAP-0003-029	CAPACITOR DM19	120pf
C109	CAP-0003-032	CAPACITOR DM19	180pf
C11	CAP-0007-003	CAPACITOR DM15	15pf
C110	CAP-0003-028	CAPACITOR DM19	300pf
C111	CAP-0007-003	CAPACITOR DM15	15pf
C112	CAP-0003-030	CAPICITOR DM19	68pf
C113	CAP-0007-003	CAPACITOR DM15	15pf
C114	CAP-0007-002	CAPACITOR DM15	47PF
C116	CAP-0003-032	CAPACITOR DM19	180pf
C117	CAP-0003-033	CAPICITOR DM19	82pf
C118	CAP-0003-014	CAPACITOR DM19	620pf
C119	CAP-0006-001	CAP, MULTILAYER	CER DIP
C12	CAP-0003-029	CAPACITOR DM19	120pf
C120	CAP-0003-026	CAPICITOR DM19	75pf
C121	CAP-0006-001	CAP, MLLTILAYER	CER DIP
C122	CAP-0003-033	CAPICITOR DM19	82pf
C123	CAP-0007-002	CAPACITOR DM15	47PF
C13	CAP-0003-029	CAPACITOR DM19	120pf
C14	CAP-0003-028	CAPACITOR DM19	300pf
C15	CAP-0003-013	CAPACITOR DM19	150pf
C16	CAP-0003-019	CAPACITOR DM19	270pf
C17	CAP-0007-003	CAPACITOR DM15	15pf
C18	CAP-0003-032	CAPACITOR DM19	180pf
C19	CAP-0007-002	CAPACITOR DM15	47PF
C20	CAP-0003-032	CAPACITOR DM19	180pf
C21	CAP-0003-016	CAPACITOR DM19	510 pf
C22	CAP-0003-019	CAPACITOR DM19	270pf
C 23	CAP-0003-004	CAPACITOR DM19	470pf
C24	CAP-0003-027	CAPICITOR DM19	50pf
C25	CAP-0007-002	CAPACITOR DM15	47PF
C26	CAP-0003-014	CAPACITOR DM19	620pf
C27	CAP-0003-028	CAPACITOR DM19	300pf
C28	CAP-0003-006	CAPACITOR DM19	1000pf
C29	CAP-0003-021	CAPACITOR DM19	200pf
C3	CAP-0037-002	CAP.ELECT 2.2Uf	RAD
C30	CAP-0003-007	CAPACITOR DM19	1200pf
C31	CAP-0003-030	CAPICITOR DM19	68pf
C32	CAP-0003-005	CAPACITOR DM19	680p f
C33	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C34	CAP-0006-001	CAP,MLLTILAYER	CER DIP. 1
C35	CAP-0006-001	CAP,MHLTILAYER	CER DIP . 1
C36	CAP-0006-001	CAP, MLLTILAYER	CER DIP. 1

EFFECTIVE 01-31-92
REF DES PART NLM DESCRIPTION

C37	CAP-0006-002	CAP,MULTILAYER CER DIP . 01
C38	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C39	CAP-0006-002	CAP,MULILAYER CER DIP . 01
C4	CAP-0006-001	CAP, MLTTILAYER CER DIP
C40	CAP-0006-001	CAP,MLTILAYER CER DIP
C41	CAP-0006-002	CAP,MULTILAYER CER DIP . 01
C42	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C43	CAP-0006-002	CAP,MLLTILAYER CER DIP . 01
C44	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C45	CAP-0006-002	CAP,MULTILAYER CER DIP . 01
C46	CAP-0006-00 1	CAP,MLLILAYER CER DIP . 1
C47	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C48	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C49	CAP-0006-001	CAP,MLTILLAYER CER DIP . 1
C5	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C50	CAP-0016-001	CAP DISC . 1UF, SEE CAP-6-1
C51	CAP-0016-001	CAP DISC . IUF, SEE CAP-6-1
C52	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C53	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C54	CAP-0006-001	CAP,MLLTLLAYER CER DIP . 1
C55	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C56	CAP-0006-001	CAP,MLLILAYER CER DIP . 1
C57	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C58	CAP-0037-009	ELECT 1000uf RAD . $3 \mathrm{~L} / \mathrm{S}$
C59	CAP-0003-014	CAPACITOR DM19 620pf
C6	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C60	CAP-0016-001	CAP DISC . IUF, SEE CAP-6-1
C61	CAP-0016-001	CAP DISC . 1UF, SEE CAP-6-1
C62	CAP-0003-014	CAPACITOR DM19 620pf
C63	CAP-0016-001	CAP DISC . 1UF, SEE CAP-6-1
C64	CAP-0016-001	CAP DISC . IUF, SEE CAP-6-1
C65	CAP-0006-001.	CAP,MLTILAYER CER DIP . 1
C66	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C67	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C68	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C69	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C7	CAP-0007-003	CAPACITOR DM15 15pf
C70	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C71	CAP-0037-009	ELECT 1000uf RAD . $3 \mathrm{~L} / \mathrm{S}$
C72	CAP-0003-014	CAPACITOR DM19 620pf
073	CAP-0016-001	CAP DISC . IUF, SEE CAP-6-1
C74	CAP-0016-001	CAP DISC . 1UF, SEE CAP-6-1
C75	CAP-0003-014	CAPACITOR DM19 620pf
C76	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
677	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C78	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C79	CAP-0037-012	CAP.ELECT 330LF RAD
C8	CAP-0007-003	CAPACITOR DM15 15pf
C80	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C81	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C82	CAP-0006-001	CAP, MULTILAYER CER DIP . 1

EFFECTIVE 01-31-92
REF DES
PART NLM
DESCRIPTION

C83	CAP-0037-012	CAP.ELECT 330UF RAD
C84	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C85	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C86	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C87	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C88	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C89	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C9	CAP-0003-026	CAPICITOR DM19 75pf
C90	CAP-0003-032	CAPACITOR DM19 180pf
C91	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C92	CAP-0003-013	CAPACITOR DM19 150pf
C93	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C94	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C95	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C98	CAP-0006-001	CAP, MLLTILAYER CER DIP
C99	CAP-0006-002	CAP, MLLILLAYER CER DIP . 01
CR1	SEM-0076-001	DIODE, 1N4148
CR10	SEM-0089-001	1N5402
CR11	SEM-0078-002	1N4001
CR12	SEM-0076-001	DIODE, 1N4148
CR13	SEM-0076-001	DIODE, 1N4148
CR14	SEM-0076-001	DIODE, 1N4148
CR15	SEM-0076-001	DIODE, 1N4148
CR16	SEM-0076-001	DIODE, 1N4148
CR2	SEM-0076-001	DIODE, 1N4148
CR3	SEM-0078-002	1N4001
CR4	SEM-0078-002	1N4001
CR5	SEM-0089-001	1N5402
CR6	SEM-0089-001	1N5402
CR7	SEM-0087-001	1N4004, EPOXY CASE
CR8	SEM-0087-001.	1N4004, EPOXY CASE
CR9	SEM-0087-002	DIODE, SELECTED
F1	FUS-0002-015	FUSE, 15 AMP 3AG
F2	FUS-0002-015	FUSE, 15 AMP 3AG
F3	FUS-0002-005	FUSE, 5 AMP 3AG
$J 1$	SOC-0002-016	IC SOCKET, 16 PIN DIP
J2	CON-0004-002	JACK, PHONO PCB
J3	CON-0004-002	JACK, PHONO PCB
$J 4$	TER-0019-002	TEPMINAL, DISCONNECT TAB
$J 5$	TER-0019-002	TERMINAL, DISCONNECT TAB
$J 6$	CON-0004-002	JACK, PHONO PCB
JU1	JUM-0002-060	JLMPER, . 60 SPACING
JU2	JLM-0002-060	JUMPER, . 60 SPACING
JU3	JUM-0002-065	JLMPER
K1	REL-0009-004	RELAY PCB
K2	REL-0007-001	USE REL-0007-007
K3	REL-0007-001	USE REL-0007-007
K4	REL-0007-001	USE REL-0007-007
K5	REL-0007-001	USE REL-0007-007
K6	REL-0007-001	USE REL-0007-007
K7	REL-0007-001	USE REL-0007-007

EFFECTIVE 01-31-92

REF DES
PART NLM

DESCRIPTION

K8	REL-0007-001
L1	ASY-0003-06M
L12	FER-0004-001
L3	ASY-0003-04M
L4	ASY-0003-07M
L5	ASY-0003-08M
P1	ASY-0003-09M
P2	TER-0004-002
P3	TER-0004-002
P4	TER-0004-002
Q1	TER-0004-002
Q10	SEM-0001-001
Q11	SEM-0068-001
Q12	SEM-0063-001
Q2	SEM-0170-023
Q3	SEM-0032-002
Q4	SEM-0057-005
Q5	SEM-0057-005
Q6	SEM-0057-005
Q7	SEM-0057-005
Q8	REA
R3	RES

```
USE REL-0007-007
IND, TOR 6T18-180n8-1 T80-2
TOROID, TYPE 73 BEAD
IND, TOR 4T18-18on8-1 T80-2
IND, TOR 7T18-180n8-1 T80-2
IND,TOR 8T18-180n8-1 T80-2
IND, TOR 9T18-180n8-1 T80-2
BOARD STAKE,TAPE \& REEL
BOARD STAKE,TAPE \& REEL
BOARD STAKE,TAPE \& REEL
BOARD STAKE,TAPE \& REEL
2N3565
TRANS, RF POMER (SRF 3733)
2N3866
POWER MOS FET
TIP 32 SILICON PON TRANS
TRANS, RF POWER (SRF 3748)
TRANS, RF POWER (SRF 3748)
TRANS, RF PONER (SRF 3748)
TRANS, RF POMER (SRF 3748)
TIP31 REP/SEM-32-2
TIP31 REP/SEM-32-2
TRANS, RF POWER (SRF 3733)
RESISTOR, \(1 / 2 \mathrm{~W} 33 \mathrm{~K}\)
RESISTOR \(10 \quad 1 / 4 \mathrm{~W}\)
RESISTOR \(10 \quad 1 / 4 \mathrm{~W}\)
RESISTOR 10 1/4W
RESISTOR 10 1/4W
RESISTOR 10 1/4W
RESISTOR, 100 2W
RESISTOR, 27 2W
RESISTOR 10 1/4W
RESISTOR, \(221 / 2 W\)
RESISTOR, 27 2W
RESISTOR, \(1 / 2 W\) 33K
RESISTOR, \(221 / 2 W\)
RESISTOR, 27 2W
RESISTOR \(101 / 4 \mathrm{~W}\)
RESISTOR, 22 1/2W
RESISTOR, 27 2W
RESISTOR, \(221 / 2 W\)
TRIMMER, 100 91AR100
TRIMMER, 100 91AR100
RESISTOR, 100 1/2W
RESISTOR 330 1/4W
RESISTOR, \(1 / 2 \mathrm{~W} 33 \mathrm{~K}\)
RESISTOR, 220 2W
RESISTOR, 22 2W
RESISTOR, 220 2W
RESISTOR \(751 / 2 \mathrm{~W}\)
RESISTOR, 100 1/2W
```

EFFECTIVE 01-31-92

REF DES	PART NLM	DESCRIPTION
R35	RES-0002-750	RESISTOR $751 / 2 \mathrm{~W}$
R36	RES-0002-101	RESISTOR, 100 1/2W
R39	RES-0001-180	RESISTOR $181 / 4 \mathrm{~W}$
R4	RES-0001-202	RESISTOR $2 \mathrm{~K} 1 / 4 \mathrm{~W}$
R40	RES-0001-222	RESISTOR $2.2 \mathrm{~K} 1 / 4 \mathrm{~W}$
R41	RES-0025-252	TRIMMER, 2.5 K
R42	RES-0001-271	RESISTOR $2701 / 4 \mathrm{~W}$
R43	RES-000 1-047	RESISTOR $4.71 / 4 \mathrm{~W}$
R44	RES-0001-301	RESISTOR $3001 / 4 \mathrm{~W}$
R45	RES-0001-301	RESISTOR $3001 / 4 \mathrm{~W}$
R46	RES-0002-101	RESISTOR, $1001 / 2 \mathrm{~W}$
R47	JLM-0002-085	JLMPER
R48	JLM-0002-085	JUMPER
R49	JLM-0002-085	JLMPER
R5	RES-0025-104	TRIMMER, 100K
R50	JLM-0002-045	JLMPER, . 45 SPACING
R5 1	JUM-0002-085	JLMPER
R52	RES-0001-471	RESISTOR 470 1/4W
R53	RES-0001-471	RESISTOR $4701 / 4 \mathrm{~W}$
R6	RES-0001-221	RESISTOR 220 1/4W
R7	RES-0001-151	RESISTOR $1501 / 4 \mathrm{~W}$
R8	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R9	RES-0001-221	RESISTOR $2201 / 4 \mathrm{~W}$
T1	TUB-0004-125	BRASS TUB . $235 \times .007 \times 1.25 \mathrm{LG}$
T11	FER-0005-001	TOROID, BEAD 0801
T2	TUB-0004-125	BRASS TUB . $235 \times .007 \times 1.25$ LG
T4	FER-0002-001	TOROID, TYPE 43
T5	TUB-0004-125	BRASS TUB . $235 \times .007 \times 1.25 L G$
T7	FER-0002-001	TOROID, TYPE 43
41	SEM-0151-002	8 BIT LATCH DRIVER
U1SOC	SOC-0002-016	IC SOCKET, 16 PIN DIP

EFFECTIVE 03-21-94

REF DES	PART NLM	DESCRIPTION
C1	CAP-0006-001	CAP,MULTILAYER CER DIP. 1
C10	CAP-0003-023	CAPACITOR DM19 130pf
C100	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C101	CAP-0037-009	ELECT 1000uf RAD . $3 \mathrm{~L} / \mathrm{S}$
C102	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C103	CAP-0031-005	CAPACITOR TANT 10uf 16 V
C104	CAP-0003-035	CAPICITOR DM19 22pf
C105	CAP-0003-003	CAPACITOR DM19 330pf
C106	CAP-0003-019	CAPACITOR DM19 270pf
C107	CAP-0003-001	CAPACITOR DM19 100pf
C108	CAP-0003-004	CAPACITOR DM19 470pf
C109	CAP-0003-002	CAPACITOR DM19 220pf
C11	CAP-0007-003	CAPACITOR DM15 15pf
C110	CAP-0003-013	CAPACITOR DM19 150pf
C111	CAP-0007-003	CAPACITOR DM15 15pf
C112	CAP-0003-026	CAPICITOR DM19 75pf
C113	CAP-0003-034	CAPICITOR DM19 18pf
C115	CAP-0037-012	CAP.ELECT 330UF RAD
C116	CAP-0003-028	CAPACITOR DM19 300pf
C117	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C118	CAP-0031-005	CAPACITOR TANT 10 U f 16 V
C119	CAP-0002-022	CAP IOPF TUB-CERAMIC 10\%
Ci2	CAP-0003-001	CAPACITOR DM19 100pf
C120	CAP-0003-002	CAPACITOR DM19 220pf
C121	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C122	CAP-0003-033	CAPICITOR DM19 82pf
C123	CAP-0003-001	CAPACITOR DM19 100pf
C13	CAP-0003-029	CAPACITOR DM19 120pf
C14	CAP-0003-021	CAPACITOR DM19 200pf
015	CAP-0003-013	CAPACITOR DM19 150pf
C16	CAP-0003-028	CAPACITOR DM19 300pf
C17	CAP-0003-034	CAPICITOR DM19 18pf
C18	CAP-0003-032	CAPACITOR DM19 180pf
$\mathrm{C19}$	CAP-0003-021	CAPACITOR DM19 200pf
C 2	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C20	CAP-0003-019	CAPACITOR DM19 270pf
C21	CAP-0003-003	CAPACITOR DM19 330pf
C 22	CAP-0003-003	CAPACITOR DM19 330p \dagger
C23	CAP-0003-028	CAPACITOR DM19 300pf
C. 4	CAP-0003-030	CAPICITOR DM19 68pf
C25	CAP-0003-003	CAPACITOR DM19 330pf
C26	CAP-0003-025	CAPACITOR DM19 560pf
C27	CAP-0003-028	CAPACITOR DM19 300pf
C 28	CAP-0003-020	CAPACITOR DM19 820pf
C 29	CAP-0003-024	CAPACITOR DM19 430pf
C3	CAP-0002-014	CAP 2. 2PF TUB-CERAMIC 10\%
C30	CAP-0003-007	CAPACITOR DM19 1200pf
C31	CAP-0003-029	CAPACITOR DM19 120pf
C32	CAP-0003-020	CAPACITOR DM19 820pf
C33	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C34	CAP-0006-001	CAP, MULTILAYER CER DIP. 1

PART NLM
DESCRIPTION

C35	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C36	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C37	CAP-0006-002	CAP, MULTILAYER	CER DIP	01
C38	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
039	CAP-0006-002	CAP, MULTILAYER	CER DIP	01
C4	CAP-0006-002	CAP, MULTILAYER	CER DIP	01
040	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
041	CAP-0006-002	CAP, MULTILAYER	CER DIP	. 01
C 42	CAP-0006-001	CAP, MUL TILAYER	CER DIP	1
C43	CAP-0006-002	CAP, MULTILAYER	CER DIP	. 01
C44	CAP-0006-001	CAP,MULTILAYER	CER DIP	1
C45	CAP-0006-002	CAP, MULTILAYER	CER DIP	01
C46	CAP-0013-001	CAPACITOR MONO	. 1uf	
C47	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
048	CAP-0006-001	CAP, MLLTILAYER	CER DIP	1
C49	CAP-0006-001	CAP, MLL TILAYER	CER DIP	1
C5	CAP-0031-001	CAP TANT 2.2Uf	16-25V	
C50	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C51	CAP-0006-001	CAP, MULTILAYER	CER DIP	. 1
052	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C53	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C54	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
055	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
0.6	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
057	CAP-0006-001	CAP, MULTILAYER	CER DIP	. 1
058	CAP-0037-009	ELECT 1000uf Rad	AD . $3 \mathrm{~L} / \mathrm{S}$	
C59	CAP-0003-014	CAPACITOR DM19	620pt	
C6	CAP-0006-001	CAP, MLL TILAYER	CER DIP	1
C60	CAP-0003-019	CAPACITOR DM19	$270 p f$	
C61	CAP-0003-019	CAPACITOR DM*9	270pf	
C62	CAP-0003-004	CAPACITOR DM19	470pt	
063	CAP-0006-001	CAP, MULTILAYER	CER DIP	i
064	CAP-0006-001	CAP, MULTILAYER	CER DIF	1
065	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C66	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C67	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C68	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
$\mathrm{C69}$	CAP-0006-001	CAP, MLLTILAYER	CER DIP	1
C7	CAP-0003-033	CAPICITOR DM19	82pf	
$\mathrm{C7} 0$	CAP-0006-001	CAP, MULTILAYER	CER DIP	1
C71	CAP-0037-009	ELECT 1000uf RAD	RD $.3 \mathrm{~L} / \mathrm{S}$	
072	CAP-0003-014	CAFACITOR DM19	620pf	
C73	CAP-0003-019	CAPACITOR DN19	270 p	
074	CAP-0003-019	CAPACITOR DM19	$270 p f$	
C75	CAP-0003-004	CAPACITOR DM19	470pf	
076	CAP-0006-001	CAP, MULTILAYER	CER DIP	. 1
C77	CAP-0006-001	CAP, MULTILAYER	CER DIP	. 1
078	CAP-0007-003	CAPACITOR DM15	15pf	
079	CAP-0003-034	CAPICITOR DM19	18pf	
C8	CAP-0007-003	CAPACITOR DM15	15pf	
C 80	CAP-0037-012	CAP.ELECT 330UF	RAD	

EFFECTIVE 03-21-94

REF DES	PART NLM	DESCRIPTION
C1	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C10	CAP-0003-023	CAPACITOR DM19 130pf
C100	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C101	CAP-0037-009	ELECT 1000uf RAD . $3 \mathrm{~L} / \mathrm{S}$
C102	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C103	CAP-0031-005	CAPACITOR TANT 104f 16 V
C104	CAP-0003-035	CAPICITOR DM19 22pf
C105	CAP-0003-003	CAPACITOR DM19 330pt
C106	CAP-0003-019	CAPACITOR DM19 270pf
C107	CAP-0003-001	CAPACITOR DM19 100pf
C108	CAP-0003-004	CAPACITOR DM19 470pf
C109	CAP-0003-002	CAPACITOR DM19 220pf
C11	CAP-0007-003	CAPACITOR DM15 15pf
C110	CAP-0003-013	CAPACITOR DM19 150pf
C111	CAP-0007-003	CAPACITOR DM15 15pf
C112	CAP-0003-026	CAPICITOR DM19 75pf
C113	CAP-0003-034	CAPICITOR DM19 18pf
C115	CAP-0037-012	CAP.ELECT 330UF RAD
C116	CAP-0003-028	CAPACITOR DM19 300pf
C117	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C118	CAP-0031-005	CAPACITOR TANT 10uf 16 V
C119	CAP-0002-022	CAP 10PF TUB-CERAMIC 10\%
012	CAP-0003-001	CAPACITOR DM19 100pf
C120	CAP-0003-002	CAPACITOR DM19 220pf
C121	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C122	CAP-0003-033	CAPICITOR DM19 82pf
C123	CAP-0003-001	CAPACITOR DM19 100pf
C13	CAP-0003-029	CAPACITOR DM19 120pf
C14	CAP-0003-021	CAPACITOR DM19 200pf
C15	CAP-0003-013	CAPACITOR DM19 150pf
C16	CAP-0003-028	CAPACITOR DM19 300pf
C17	CAP-0003-034	CAPICITOR DM19 18pf
C18	CAP-0003-032	CAPACITOR DM19 180pf
C19	CAP-0003-021	CAPACITOR DM19 200pf
C2	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C20	CAP-0003-019	CAPACITOR DM19 270pf
C21	CAP-0003-003	CAPACITOR DM19 330pf
C22	CAP-0003-003	CAPACITOR DM19 330pf
C23	CAP-0003-028	CAPACITOR DM19 300pf
$\mathrm{C} \cdot 4$	CAP-0003-030	CAPICITOR DM19 68pf
C 25	CAP-0003-003	CAPACITOR DM19 330pf
C26	CAP-0003-025	CAPACITOR DM19 560pf
C 27	CAP-0003-028	CAPACITOR DM19 300pf
C28	CAP-0003-020	CAPACITOR DM19 820pf
C29	CAP-0003-024	CAPACITOR DM19 430pf
C3	CAP-0002-014	CAP 2.2PF TUB-CERAMIC 10\%
C30	CAP-0003-007	CAPACITOR DM19 1200pf
C31	CAP-0003-029	CAPACITOR DM19 120pf
C32	CAP-0003-020	CAPACITOR DM19 820pf
C33	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C34	CAP-0006-001	CAP, MULTILAYER CER DIP . 1

REF DES	PART NLM	DESCRIPTION
C81	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C82	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C83	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C84	CAP-0003-033	CAPICITOR DM19 82pf
C85	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C86	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C87	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C88	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C89	CAP-0003-019	CAPACITOR DM19 270pf
$\mathrm{C9}$	CAP-0003-026	CAPICITOR DM19 75pf
C90	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C91	CAP-0031-005	CAPACITOR TANT 10 Uf 16 V
C92	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C93	CAP-0006-001	CAP, MLLTILAYER CER DIP. 1
C94	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C95	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C96	CAP-0006-001	CAP, MLTILAYER CER DIP . 1
C97	CAP-0037-012	CAP.ELECT 330UF RAD
C98	CAP-0006-00	CAP, MLLILLAYER CER DIP . 1
C99	CAP-0006-002	CAP, MLITILAYER CER DIP . 01
CR1	SEM-0076-001	DIODE, 1N4148
CR10	SEM-0089-001	1N5402
CR11	SEM-0078-002	1N4001
0 Cl 12	SEMI-0076-001	DIODE, IN4148
CR13	SEM-0076-001	DIODE, 1 N4148
CR14	SEM-0076-CO1	DIODE, 1 N4148
CR15	SEM-0076-001	DIODE, 1 N4148
CR16	SEM-0076-001	DIODE, 1N4148
CR2	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR3	SEM-0078-002	1 N 4001
CR4	SEM-0078-002	1N4001
CR5	SEM-0089-001	1 N5402
CR6	SEM-0089-001	1N5402
CR?	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR8	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
$F 1$	FUS-0002-015	FUSE, 15 AMP 3AG
F2	FUS-0002-015	FUSE, 15 AMP 3AG
F3	FUS-0002-005	FUSE, 5 AMP 3AG
FS2	CAP-0001-019	CAPACITOR MICA 180pf
$\checkmark 2$	CON-0004-002	JACK, PHONO PCB
J3	CON-0004-002	JACK, PHONO PCB
J4	TER-0019-002	TERMINAL, DISCONNECT TAB
$J 5$	TER-0019-002	TERMINAL, DISCONNECT TAB
J6	CON-0004-002	JACK, PHONO PCB
JISOC	SOC-0002-016	IC SOCKET, 16 PIN DIP
Ju1	JUM-0002-085	JUMPER, . $85^{\prime \prime}$ TEFLON
JU10	JLMM-0002-045	JUMPER, $.45^{\prime \prime}$ TEFLON
UU2	ULM-0002-085	ULMMPER, .85" TEFLON
JU3	JLM-0002-085	JUMPER, $.85^{\prime \prime}$ TEFLON
JU4	JLM-0002-065	JLMPER, $6.65^{\prime \prime}$ TEFLON
JU5	JUM-0002-065	JUMPER, . $65^{\prime \prime}$ TEFLON

REF DES
PART NLM

JUM-0002-065
JU6 JLM-0002-100
U 4
JU9
Ki
K2
K3
K4
K5
K6
K7
K8
K9
L1
L10
L1
L12
-13
L!4
L2
L3
i. 4

L5
L6
L7
L8
L9
Q10
Q11
Q12
Q13
Q15
Q16
Q17
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
R1
R10
R11
R12
R13
R14
$R 15$
R10
Donatedrity ${ }^{7}$ AC5XP

JUM-0002-100
ULM-0002-045
REL-0007-007
REL-0007-007
REL-0007-007
REL-0007-007
REL-0007-007
REL-0007-007
REL-0007-007
REL-0007-007
REL-0009-004
ASY-0003-06M
ASY-0003-17
ASY-0003-2 1 T1
ASY-0322-L12
FER-0002-001
FER-0002-001
ASY-0003-04iN
ASY-0003-C7M
ASY-0003-08N
ASY-0003-09M
ASY-0003-11M
ASY-0003-12M
ASY-0003-13M
ASY-0003-17
SEM-0068-001
SEM-0063-001
SEMI-0070-001
SEM-0070-001
SEM-0070-001
SEM-0070-001
SEM-0170-023
SEM-0032-002
SEM-0057-005
SEM-0057-005
SEM-0057-005
SEM-0057-005
SEM-0026-001
SEM-0026-001
SEM-0068-001
RES-0002-333
RES-0001-100
RES-0001-100
RES-0001-100
RES-0001-100
RES-0001-100
RES-0005-101
RES-0005-100
RES-0001-103

DESCRIPTION

JUMPER, .65" TEFLON
JUMPER, 1" \#24 TEFLON
JLMPER, 1" \#24 TEFLON
JLMMPER, .45" TEFLON
D/P BASE REL W/ CLEAR COVERS
RELAY, 12 VOLT
IND,TOR 6T18-180n8-1 T80-2
IND, TOR 17T18-180n8-1 T80-2
IND, TOR 21T18-180n8-1 T80-2
FERRITE TOROID, 73 BEAD
TOROID, TYPE 43
TOROID, TYPE 43
IND, TOR 4T18--180n8-1 T80-2
IND, TOR 7T18-180n8-1 T80-2
iND, TOR 8T18-180n8-1 T80-2
IND, TOR 9T18-180n8-1 T80-2
IND, TOR 11T18-180n8-1 T80-2
IND,TOR 12T18-180n8-1 T80-2
IND,TOR 13T 18-180n8-1 T80-2
IND, TOR 17T18-180n8-1 T80-2
TRANS, RF POWER (SRF 3733)
2N3866
MUE720 POWER TRANS
MUE 720 POWER TRANS
MUE720 POWER TRANS
MUE720 POWER TRANS
POWER MOS FET
TIP 32 SILICON POW TRANS
TRANS, RF POWER (SRF 3748)
TRANSISTOR TIP120W/HDW
TRANSISTOR TIP120W/HDW
TRANS, RF POWER (SRF 3733)
RESISTOR, $1 / 2 \mathrm{~W} 33 \mathrm{~K}$
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR, 1002 W
RESISTOR, 10 TW
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$

EFFECTIVE 03-21-94

REF DES

R18
R19
R20
R21
R23
R24
R25
R26
R27
R28
R29
R3
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R4
R40
R4 1
R42
R43
R44
R45
R46
R5
R52
R5 3
R54
$R 55$
R5 6
R5 7
R58
R59
R6
R60
R61
R62
R63
R64
R65
R66
R69
R7
98
Donatextcby AC5XP

PART NLM

RES-0002-220
RES-0006-100
RES-0002-220
RES-0006-100
RES-0002-220
RES-0006-100
RES-0002-220
RES-0001-104
RES-0001-104
RES-0002-101
RES-0001-104
RES-0001-103
RES-0005-221
RES-0005-220
RES-0005-221
RES-0001-621
JUM-0002-045
RES-0001-105
RES-0001-104
RES-0001-104
RES-0027-103
RES-0001-180
RES-0001-332
RES-0001-102
RES-0027-202
RES-0001-271
RES-0001-047
RES-0001-301
RES-0001-301
RES-0001-103
RES-0001-512
RES-0002-470
RES-0001-100
RES-0002-470
RES-0001-100
RES-0001-100
RES-0027-100
RES-0001-621
RES-0001-100
RES-0001-332
RES-0027-100
RES-0037-001
RES-0001-621
RES-0027-100
RES-0001-100
RES-0037-001
RES-0001-621
RES-0001-103
RES-0001-302
RES-0001-102
RES-0001-221

DESCRIPTION

RESISTOR $2701 / 4 \mathrm{~W}$
RESISTOR $4.71 / 4 \mathrm{~W}$
RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 5.1K $1 / 4 \mathrm{~W}$
RES ISTOR, 47 1/2W
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR, $471 / 2 W$
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
10 OHM TRIM POT
RESISTOR $6201 / 4 \mathrm{~W}$
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR $3.3 \mathrm{~K} 1 / 4 \mathrm{~W}$
10 OHM TRIM POT
RESISTOR IW WIRE W. . 1 OHM
RESISTOR 620 1/4W
10 OHM TRIM POT
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR IW WIRE W. . 1 OHm
RESISTOR $620 \quad 1 / 4 \mathrm{~W}$
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
3K, $1 / 4$ WATT 5% CARBON FILM
RESISTOH $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 220 1/4W

REF DES	PART NUM
T1	TUB-0005-125
T10	ASY-0223-L2M
T11	FER-0005-001
T12	ASY-0010-07
T2	TUB-0005-125
T3	ASY-0222-T2
T4	FER-0002-001
T5	TUB-0005-125
T6	ASY-0222-T2
T7	FER-0002-001
T8	ASY-0222-T3
T9	ASY-0223-L2M
U1	SEM-0151-002
U1S0C	SOC-0002-016
U2	SEM-0154-001

DESCRIPTION

```
.3810D X . 012 WALL X 1.25LG
INDUCTOR
TOROID, BEAD 0801
7 TURN TRANSFORMER
. 3810D X . 012 WALL X 1.25LG
INDUCTOR, TOROID
TOROID, TYPE 43
.3810D X .012 WALL X 1.25LG
INDUCTOR, TOROID
TOROID, TYPE 43
INDUCTOR, TOROID
INDUCTOR
UCN4821A 8 BIT DRIVER (RED)
IC SOCKET, 16 PIN DIP
LM324 QUAD OPAMP
```

REF DES	PART NLM	DESCRIPTION
C1	CAP-0027-104	CAPACITOR FILM CK05. 1
C10	CAP-0001-031	CAPACITOR MICA 18pf
C11	CAP-0002-016	CAP 3.3PF TUB-CERAMIC 10\%
C12	CAP-0013-003	CAPACITOR MONO .01uf 100V
C13	CAP-0006-004	CAP,MULTILAYER CER DIP . 047
C14	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C15	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C16	CAP-0006-002	CAP,MLTILAYER CER DIP . 01
C2	CAP-0027-224	CAPACITOR FILM CK05 . 22
C3	CAP-0001-001	CAPACITOR MICA 10pf
C4	CAP-0001-004	CAPACITOR MICA 27pf
C5	CAP-0001-004	CAPACITOR MICA 27pf
C6	CAP-0002-016	CAP 3.3PF TUB-CERAMIC 10\%
C7	CAP-0013-003	CAPACITOR MONO . 014 f 100V
C8	CAP-0001-001	CAPACITOR MICA 10pf
C9	CAP-0001-003	CAPACITOR MICA 22pf
CR1	SEM-0080-004	MV209
CR2	SEM-0080-004	MN209
CR3	SEM-0080-004	MV209
CR4	SEM-0080-004	MN209
CR5	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
L1	IND-0001-470	INDUCTOR, 47uh WEE
L2	ASY-0004-09M	IND,TOR 9T18-2260n11-1 T304
L3	IND-0001-470	INDUCTOR, 47uh WEE
L4	ASY-0004-07M	IND, TOR 7T18-226 ON 11-1T304
Q1	SEM-0003-002	MPS5179
Q2	SEM-0003-002	MPS5179
Q3	SEM-0003-002	MPS5179
Q4	SEM-0015-001	MPS-A63
Q5	SEM-0004-002	2N2907, MPS2907
R1	RES-0001-562	RESISTOR 5.6K $1 / 4 \mathrm{~W}$
R10	RES-0001-101	RESISTOR $1001 / 4 \mathrm{~W}$
R11	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R12	RES-0001-103	RESISTOR 10K 1/4W
R13	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R14	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R2	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R3	RES-0001-472	RESISTOR 4.7K $1 / 4 \mathrm{~W}$
R4	RES-0001-911	RESISTOR $9101 / 4 \mathrm{~W}$
R5	RES-0001-103	RESISTOR 10K 1/4W
R6	RES-0001-472	RESISTOR 4.7K $1 / 4 \mathrm{~W}$
R7	RES-0001-102	RESISTOR 1K 1/4W
R8	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R9	RES-0001-472	RESISTOR $4.7 \mathrm{~K} 1 / 4 \mathrm{~W}$

EFFECTIVE 07-14-93

REF DES	PART NLM	DESCRIPTION
C1	CAP-0031-008	CAP TANT 1uf $16-25 \mathrm{~V}$
C2	CAP-0031-001	CAP TANT 2.2uf $16-25 \mathrm{~V}$
C3	CAP-0031-003	CAPACITOR TANT 4.7 f f 16 V
C4	CAP-0031-008	CAP TANT 1uf $16-25 \mathrm{~V}$
C5	CAP-0031-003	CAPACITOR TANT 4.7 uf 16 V
C6	CAP-0031-005	CAPACITOR TANT 10uf 16 V
C7	CAP-0013-005	CAPACITOR MONO . 001 uf
R1	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R2	RES-0001-103	RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
R3	RES-0001-101	RESISTOR $1001 / 4 \mathrm{~W}$
R4	RES-0001-105	RESISTOR 1M 1/4W
R5	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R6	RES-0001-511	RESISTOR $5101 / 4 \mathrm{~W}$
U1	SEM-0102-002	LC403 AGC AMP

EFFECTIVE 03-21-94

REF DES	PART NLM	DESCRIPTION	
C1	CAP-0006-001	CAP,MLLTILAYER	CER DIP . 1
C10	CAP-0003-023	CAPACITOR DM19	130pf
C100	CAP-0006-001	CAP,MLTILAYER	CER DIP . 1
C101	CAP-0037-009	ELECT 1000uf RAD	D . $3 \mathrm{~L} / \mathrm{S}$
C102	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C103	CAP-0031-005	CAPACITOR TANT	10uf 16V
C104	CAP-0003-035	CAPICITOR DM19	22pf
C105	CAP-0003-003	CAPACITOR DM19	330pf
C106	CAP-0003-019	CAPACITOR DM19	270pf
C107	CAP-0003-001	CAPACITOR DM19	100pf
C108	CAP-0003-004	CAPACITOR DM19	470pf
C109	CAP-0003-002	CAPACITOR DM19	220pf
C11	CAP-0007-003	CAPACITOR DM15	15pf
C110	CAP-0003-013	CAPACITOR DM19	150pf
C111	CAP-0007-003	CAPACITOR DM15	15pf
C112	CAP-0003-026	CAPICITOR DM19	75 pf
C113	CAP-0003-034	CAPICITOR DM19	18pf
C115	CAP-0037-012	CAP.ELECT 330UF	RaD
C116	CAP-0003-028	CAPACITOR DM19	300pf
C117	CAP-0006-001	CAP,MULTILAYER	CER DIP . 1
C118	CAP-0031-005	CAPACITOR TANT	10uf 16V
C12	CAP-0003-001	CAPACITOR DM19	100pf
C120	CAP-0003-002	CAPACITOR DM19	220pf
C121	CAP-0006-001	CAP,MLTILLAYER	CER DIP . 1
C122	CAP-0003-033	CAPICITOR DM19	82pf
C123	CAP-0003-001	CAPACITOR DM19	100pf
C13	CAP-0003-029	CAPACITOR DM19	120pf
C14	CAP-0003-021	CAPACITOR DM19	200pf
C15	CAP-0003-013	CAPACITOR DM19	150pf
C16	CAP-0003-028	CAPACITOR DM19	300pf
C17	CAP-0003-034	CAPICITOR DM19	18pf
C18	CAP-0003-032	CAPACITOR DM19	180pf
C19	CAP-0003-021	CAPACITOR DM19	200pf
C 2	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C 20	CAP-0003-019	CAPACITOR DM19	270pf
C21	CAP-0003-003	CAPACITOR DM19	330 pf
C 22	CAP-0003-003	CAPACITOR DM19	330 pf
C23	CAP-0003-028	CAPACITOR DM19	300pf
C24	CAP-0003-030	CAPICITOR DM19	68pf
C25	CAP-0003-003	CAPACITOR DM19	330 pf
C26	CAP-0003-025	CAPACITOR DM19	560pf
C 27	CAP-0003-028	CAPACITOR DM19	300pf
C28	CAP-0003-020	CAPACITOR DM19	820pf
C29	CAP-0003-024	CAPACITOR DM19	430pf
C3	CAP-0013-003	CAPACITOR MONO	. 014 ff 100 V
C30	CAP-0003-007	CAPACITOR DM19	1200pf
C31	CAP-0003-029	CAPACITOR DM19	120pf
C32	CAP-0003-020	CAPACITOR DM19	820pf
C33	CAP-0006-001	CAP, MULTILAYER	CER DIP . 1
C34	CAP-0006-001	CAP,MLTILAYER	CER DIP . 1
C35	CAP-0006-001	CAP,MULILLAYER	CER DIP

EFFECTIVE 03-21-94

REF DES	PART NLM	DESCRIPTION
C36	CAP-0006-001	CAP,MULTILAYER CER DIP
C37	CAP-0006-002	CAP,MLTILAYER CER DIP . 01
C38	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C39	CAP-0006-002	CAP, MULTILAYER CER DIP . 01
C4	CAP-0013-003	CAPACITOR MONO . 014 f (100V
C40	CAP-0006-001	CAP,MULILAYER CER DIP . 1
C41	CAP-0006-002	CAP,MULTILAYER CER DIP . 01
C42	CAP-0006-001	CAP,MLTILLAYER CER DIP . 1
C43	CAP-0006-002	CAP,MLTILAYER CER DIP . 01
C44	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C45	CAP-0006-002	CAP,MLTILAYER CER DIP . 01
C46	CAP-0013-001	CAPACITOR MONO . 1 uf
C47	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C48	CAP-0006-001	CAP, MULTILAYER CER DIP
C49	CAP-0006-001	CAP, MULTILAYER CER DIP
C 5	CAP-0031-001	CAP TANT 2.2uf $16-25 \mathrm{~V}$
C50	CAP-0006-001	CAP, MLITILAYER CER DIP . 1
C51	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C52	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C53	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C54	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C55	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C56	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C57	CAP-0006-001	CAP,MLLTILAYER CER DIP. 1
C58	CAP-0037-009	ELECT 1000uf Rad . $3 \mathrm{~L} / \mathrm{S}$
C59	CAP-0003-014	CAPACITOR DM19 620pf
C6	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C60	CAP-0003-019	CAPACITOR DM19 270pf
C61	CAP-0003-019	CAPACITOR DM19 270pf
C62	CAP-0003-004	CAPACITOR DM19 470pf
063	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C64	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C65	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C66	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C67	CAP-0006-001	CAP, MLLTILAYER CER DIP. 1
C68	CAP-0006-001	CAP,MLTILAYER CER DIP. 1
C69	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C7	CAP-0003-033	CAPICITOR DM19 82pf
C70	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
671	CAP-0037-009	ELECT 1000uf RAD $3 \mathrm{~L} / \mathrm{S}^{\circ}$
672	CAP-0003-014	CAPACITOR DM19 620pf
073	CAP-0003-019	CAPACITOR DM19 270pf
C74	CAP-0003-019	CAPACITOR DM19 270pf
C75	CAP-0003-004	CAPACITOR DM19 470pf
C76	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C77	CAP-0006-001	CAP, MULTILAYER CER DIP. 1
C78	CAP-0007-003	CAPACITOR DM15 15pf
C79	CAP-0003-034	CAPICITOR DM19 18pf
C8	CAP-0007-003	CAPACITOR DM15 15pf
C80	CAP-0037-012	CAP.ELECT 330UF RAD
C81	CAP-0006-001	CAP, MLTILAYER CER DIP

$\mathrm{C82}$	CAP-0006-001	CAP,MULTILAYER CER DIP . 1
C83	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C84	CAP-0003-033	CAPICITOR DM19 82pf
C85	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C86	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C87	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C88	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C89	CAP-0003-019	CAPACITOR DM19 270pf
C 9	CAP-0003-026	CAPICITOR DM19 75pf
C90	CAP-0006-001	CAP, MLLTILAYER CER DIP . 1
C91	CAP-0031-005	CAPACITOR TANT 10uf 16 V
C92	CAP-0006-001	CAP, MULT ILAYER CER DIP . 1
C93	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C94	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C95	CAP-0006-001	CAP,MLLTILAYER CER DIP . 1
C96	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C97	CAP-0037-012	CAP.ELECT 330UF RAD
C98	CAP-0006-001	CAP, MULTILAYER CER DIP . 1
C99	CAP-0006-002	CAP, MULTILAYER CER DIP . 01
CR1	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR10	SEM-0089-001	1N5402
CR11	SEM-0078-002	1N4001
CR12	SEM-0076-001	DIODE, 1N4148
CR13	SEM-0076-001	DIODE, 1N4148
CR14	SEM-0076-001	DIODE, 1N4148
CR15	SEM-0076-001	DIODE, IN4148
CR16	SEM-0076-001	DIODE, IN4148
CR2	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR3	SEM-0078-002	1N4001
CR4	SEM-0078-002	1N4001
CR5	SEM-0089-001	1N5402
CR6	SEM-0089-001	1N5402
CR7	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR9	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
F1	FUS-0002-015	FUSE, 15 AMP 3AG
F2	FUS-0002-015	FUSE, 15 AMP 3AG
F3	FUS-0002-005	FUSE, 5 AMP 3AG
J2	CON-0004-002	JACK, PHONO PCB
J3	CON-0004-002	JACK, PHONO PCB
J4	TER-0019-002	TERMINAL, DISCONNECT TAB
$J 5$	TER-0019-002	TERMINAL, DISCONNECT TAB
J6	CON-0004-002	JACK, PHONO PCB
JISOC	SOC-0002-016	IC SOCKET, 16 PIN DIP
UU1	JUM-0002-085	JUMPER, .85" TEFLON
U10	JUM-0002-100	JUMPER, $1^{\prime \prime}$ \#24 TEFLON
JU11	ULM-0002-255	JUMPER, $2.55^{\prime \prime}$ \#24 TEFLON
U22	JUM-0002-085	JUMPER, .85" TEFLON
ЈU3	JLM-0002-085	UUMPER, .85' TEFLON
JU4	UUM-0002-065	JUMPER, $65^{\prime \prime}$ TEFLON
JU5	ULM-0002-065	ULMPER, $65^{\prime \prime}$ TEFLON
JU6	JUM-0002-065	JUMPER, .65" TEFLON

EFFECTIVE 03-21-94

REF DES	PART NLM	DESCRIPTION
JU7	ULM-0002-100	JLMPER, 1 " \#24 TEFLON
UU8	ULM-0002-100	JUMPER, ${ }^{\prime \prime}$ \# 24 TEFLON
JU9	ULM-0002-045	ULMPER, .45" TEFLON
K1	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K2	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K3	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K4	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K5	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K6	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K7	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
K8	REL-0007-007	D/P BASE REL W/ CLEAR COVERS
Kg	REL-0009-004	RELAY, 12 VOLT
L1	ASY-0003-06M	IND, TOR 6T18-180n8-1 T80-2
L10	ASY-0003-17	IND, TOR 17T18-180n8-1 T80-2
Lit	ASY-0003-21M	IND, TOR 21T18-180n8-1 T80-2
ᄂ12	ASY-0322-L12	FERRITE TOROID, 73 BEAD
L13	FER-0002-001	TOROID, TYPE 43
L14	FER-0002-001	TOROID, TYPE 43
L2	ASY-0003-04M	IND, TOR 4T18-180n8-1 T80-2
L3	ASY-0003-07M	IND, TOR 7T18-180n8-1 T80-2
L4	ASY-0003-08M	IND, TOR 8T18-180n8-1 T80-2
L6	ASY-0003-09M	IND, TOR 9T18-180n8-1 T80-2
L6	ASY-0003-11M	IND, TOR 11T18-180n8-1 T80-2
L7	ASY-0003-12M	IND, TOR 12T18-180n8-1 T80-2
L8	ASY-0003-13M	IND, TOR 13T18-180n8-1 T80-2
L9	ASY-0003-17	IND, TOR 17T18-180n8-1 T80-2
Q1	SEM-0010-001	MPS-A14
Q10	SEM-0068-001	TRANS, RF POWER (SRF 3733)
Q11	SEM-0063-001	2N3866
Q12	SEM-0070-001	MUE 720 PONER TRANS
Q. 13	SEM-0070-001	MUE 720 POWER TRANS
Q15	SEM-0070-001	MJE720 POWER TRANS
Q16	SEM-0070-001	MJE720 POWER TRANS
Q17	SEM-0170-023	PONER MOS FET
Q2	SEM-0032-002	TIP 32 SILICON POW TRANS
Q3	SEM-0057-005	TRANS, RF POWER (SRF 3748)
Q4	SEM-0057-005	TRANS, RF POWER (SRF 3748)
Q5	SEM-0057-005	TRANS, RF POWER (SRF 3748)
Q6	SEM-0057-005	TRANS, RF POWER (SRF 3748)
Q7	SEM-0026-001	TRANSISTOR TIP120W/HDW
Q8	SEM-0026-001	TRANSISTOR TIP120W/HDW
QS	SEM-0068-001	TRANS, RF POWER (SRF 3733)
R1	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R10	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R11	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R12	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R13	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R14	RES-0001-100	RESISTOR $101 / 4 \mathrm{~W}$
R15	RES-0005-101	RESISTOR, 100 2W
R16	RES-0006-100	RESISTOR, $10 \mathrm{1W}$
R18	RES-0002-220	RESISTOR, $221 / 2 \mathrm{~W}$

PART NLM

RES-0006-100
R19
RES-0002-220
RES-0006-100
RES-0002-220
RES-0006-100
RES-0002-220
RES-0001-473
RES-0001-104
RES-0002-101
RES-0001-104
RES-0001-103
RES-0005-221
RES-0005-220
RES-0005-221
RES-0001-621
JUM-0002-045
RES-0001-105
RES-0001-104
RES-0001-104
RES-0027-103
RES-0001-180
RES-0001-105
RES-0001-102
RES-0027-202
RES-0001-271
RES-0001-047
RES-0001-301
RES-0001-301
RES-0001-103
RES-0001-510
RES-0001-5 10
RES-0001-104
RES-0002-470
RES-0001-100
RES-0002-470
RES-0001-100
RES-0001-100
RES-0027-100
RES-0001-621
RES-0001-100
RES-0001-103
RES-0027-100
RES-0037-001
RES-0001-621
RES-0027-100
RES-0001-100
RES-0037-001
RES-0001-621
RES-0027-103
RES-0001-103
RES-0001-102

DESCRIPTION

RES ISTOR, 10 1W
RESISTOR, $221 / 2 \mathrm{~W}$
RESISTOR, 10 1W
RESISTOR, $221 / 2 W$
RESISTOR, 10 1W
RESISTOR, $221 / 2 W$
RESISTOR $47 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR, $1001 / 2 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR, 220 2W
RESISTOR, 22 2W
RESISTOR, 220 2W
RESISTOR 620 1/4W
JLMPER, $45^{\prime \prime}$ TEFLON
RESISTOR $1 \mathrm{M} 1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
TRIMMER, 10 K
RESISTOR $181 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{M} 1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR, TRIMPOT 2 K
RESISTOR 270 1/4W
RESISTOR $4.71 / 4 \mathrm{~W}$
RESISTOR $3001 / 4 \mathrm{~W}$
RESISTOR 300 1/4W
RESISTOR $10 \mathrm{~K} 1 / 4 \mathrm{~W}$
$510 \mathrm{MM}, 1 / 4 \mathrm{~W}$ CARBON FILM
$510 H M, 1 / 4 W$ CARBON FILM
RESISTOR $100 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR, $471 / 2 W$
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR, 47 1/2W
RESISTOR $101 / 4 \mathrm{~W}$
RESISTOR 10 1/4W
10 OHM TRIM POT
RESISTOR 620 1/4W
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
10 OHM TRIM POT
RESISTOR 1W WIRE W. . 1 OHm
RESISTOR 620 1/4W
10 OHM TRIM POT
RESISTOR $10 \quad 1 / 4 \mathrm{~W}$
RESISTOR 1 W WIRE W. . 1 OHm
RESISTOR 620 1/4W
TRIMMER, 10K
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$

REF DES	PART NUM
R7	RES-0001-333
R8	RES-0001-102
R9	RES-0001-221
T1	TUB-0005-125
T10	ASY-0223-L2M
T11	FER-0005-001
T12	ASY-0010-07
T13	ASY-1630-T1
T14	ASY-1630-T1
T2	TUB-0005-125
T3	ASY-0222-T2
T4	FER-0002-001
T5	TUB-0005-125
T6	ASY-0222-T2
T7	FER-0002-001
T8	ASY-0222-T3
T9	ASY-0223-L2M
U1	SEM-0151-002
U1SOC	SOC-0002-016
U2	SEM-0154-001

DESCRIPTION

RESISTOR 33K $1 / 4 \mathrm{~W}$
RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$ RESISTOR $2201 / 4 \mathrm{~W}$ $.38100 \times .012$ WALL $\times 1.25 L G$ INDUCTOR
TOROID, BEAD 0801
7 TURN TRANSFORMER
XFORMER, $1630 / 330$ POWER DET.
XFORMER, $1630 / 330$ POWER DET.
$.3810 \mathrm{X} \times .012$ WALL $\times 1.25 \mathrm{LG}$
INDUCTOR, TOROID
TOROID, TYPE 43
$.3810 \mathrm{D} \times .012$ WALL $\times 1.25 \mathrm{LG}$
INDUCTOR, TOROID
TOROID, TYPE 43
INDUCTOR, TOROID
INDUCTOR
UCN4821A 8 BIT DRIVER (RED)
IC SOCKET, 16 PIN DIP LM324 QUAD OPAMP

EFFECTIVE 07-14-93

REF DES	PART NLM	DESCRIPTION
C1	CAP-0037-006	CAP.ELECT 1OUF RAD
C10	CAP-0037-004	CAP.ELECT 47UF RAD
C11	CAP-0031-001	CAP TANT 2.2uf 16-25V
C12	CAP-0013-002	CAPACITOR MONO .22UF 50V
C2	CAP-0027-102	CAPACITOR FILM CKO5 . 001
C3	CAP-0027-103	CAPACITOR FILM CK05 . 01
C4	CAP-0027-103	CAPACITOR FILM CK05 . 01
C5	CAP-0027-103	CAPACITOR FILM CK05 . 01
C6	CAP-0027-104	CAPACITOR FILM CK05 . 1
C7	CAP-0006-003	CAP,MLTILAYER CER DIP . 001
C8	CAP-0037-004	CAP.ELECT 47UF RAD
C9	CAP-0037-004	CAP.ELECT 47UF RAD
CR1	SEM-0083-001	1N4740A
CR2	SEM-0076-001	DIODE, 1N4148
CR3	SEM-0076-001	DIODE, 1 N4148
Q1	SEM-0004-002	2N2907, MPS2907
Q2	SEM-0001-001	2N3565
Q3	SEM-0170-023	POWER MOS FET
R1	RES-0001-101	RESISTOR $1001 / 4 \mathrm{~W}$
R10	RES-0001-103	RESISTOR 10K 1/4W
R11	RES-0027-103	TRIMMER, 10K
R12	RES-0001-104	RESISTOR 100K $1 / 4 \mathrm{~W}$
R13	RES-0027-103	TRIMMER, 10K
R14	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R15	RES-0001-047	RESISTOR $4.71 / 4 \mathrm{~W}$
R16	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R17	RES-0027-105	TRIMMER, 1 MEG POT
R2	RES-0001-471	RESISTOR 470 1/4W
R3	RES-0001-474	RESISTOR 470K $1 / 4 \mathrm{~W}$
R4	RES-0001-222	RESISTOR 2.2K 1/4W
R5	RES-0001-222	RESISTOR 2.2K 1/4W
R6	RES-0001-473	RESISTOR 47K $1 / 4 \mathrm{~W}$
R7	RES-0001-473	RESISTOR 47K 1/4W
R8	RES-0001-472	RESISTOR 4.7K $1 / 4 \mathrm{~W}$
R9	RES-0001-472	RESISTOR 4.7K 1/4W
U1	SEM-0153-005	ULN-2283B LOW PWR ALD AMP

EFFECTIVE 07-14-93

REF DES	PART NLM	DESCRIPTION
C1	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C10	CAP-0031-008	CAP TANT 1uf $16-25 \mathrm{~V}$
C11	CAP-0027-103	CAPACITOR FILM CKO5 . 01
C12	CAP-0027-103	CAPACITOR FILM CK05 . 01
C13	CAP-0027-103	CAPACITOR FILM CK05 .01
C14	CAP-0027-103	CAPACITOR FILM CK05 . 01
C15	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C16	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C17	CAP-0031-001	CAP TANT 2.2uf 16-25V
C18	CAP-0030-005	CAPACITOR TANT . 47 U (35 V
C19	CAP-0006-003	CAP,MLTILLAYER CER DIP . 001
C 2	CAP-0037-004	CAP.ELECT 47UF RAD
C20	CAP-0037-004	CAP.ELECT 47UF RAD
C21	CAP-0037-004	CAP.ELECT 47UF RAD
C 22	CAP-0013-002	CAPACITOR MONO .22UF 50 V
C3	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C4	CAP-0006-001	CAP,MLTILAYER CER DIP . 1
C5	CAP-0001-003	CAPACITOR MICA 22pf
C6	CAP-0027-103	CAPACITOR FILM CK05 . 01
C7	CAP-0027-104	CAPACITOR FILM CK05. 1
C8	CAP-0027-472	CAPACITOR FILM CK05 . 0047
C9	CAP-0027-104	CAPACITOR FILM CK05 . 1
CR1	SEM-0076-001	DIODE, 1N4148
CR2	SEM-0076-001	DIODE, 1N4148
CR3	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR4	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
CR5	SEM-0170-027	SMALL SIGNAL SCHOTTKY DIODE
JU1	JLM-0002-045	JUMPER, .45" TEFLON
P1	CON-0240-040	POST HEADER 4 PIN
Q1	SEM-0004-002	2N2907, MPS2907
Q2	SEM-0021-002	PN2222A
Q3	SEM-0021-002	PN2222A
R1	RES-0001-331	RESISTOR $3301 / 4 \mathrm{~W}$
R10	RES-0001-332	RESISTOR 3.3K $1 / 4 \mathrm{~W}$
R11	RES-0001-332	RESISTOR 3.3K $1 / 4 \mathrm{~W}$
$R 12$	RES-0001-332	RESISTOR 3.3K 1/4W
R13	RES-0001-104	RESISTOR 100K $1 / 4 \mathrm{~W}$
R14	RES-0001-473	RESISTOR 47K $1 / 4 \mathrm{~W}$
R15	RES-0001-273	RESISTOR $27 \mathrm{~K} 1 / 4 \mathrm{~W}$
R16	RES-0001-123	RESISTOR 12K 1/4W
R17	RES-0001-682	RESISTOR $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$
R18	RES-0001-153	RESISTOR 15K 1/4W
R19	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R2	RES-0001-102	RESISTOR $1 \mathrm{~K} 1 / 4 \mathrm{~W}$
R20	RES-0001-102	RESISTOR 1K $1 / 4 \mathrm{~W}$
R21	RES-0001-472	RESISTOR 4.7K $1 / 4 \mathrm{~W}$
R22	RES-0001-104	RESISTOR 100K $1 / 4 \mathrm{~W}$
R23	RES-0001-473	RESISTOR 47K 1/4W
R24	RES-0001-273	RESISTOR 27K $1 / 4 \mathrm{~W}$
R25	RES-0001-123	RESISTOR 12K $1 / 4 \mathrm{~W}$
R26	RES-0001-153	RESISTOR 15K 1/4W

EFFECTIVE 07-14-93

REF DES
PART NLM

R27
R28
R29
R3
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R4
R40
R41
R5
R6
R7

R8
R9
U1
U2
U3
U4
Y1

RES-0001-393
RES-0001-243
RES-0027-502
RES-0001-152
RES-0001-124
RES-0001-222
RES-0027-102
RES-0001-753
RES-0001-222
RES-0027-102
RES-0001-222
RES-0001-222
RES-0027-103
RES-0027-103
RES-0001-103
RES-0001-202
RES-0001-047
RES-0001-103
RES-0001-103
RES-0001-332
RES-0001-332
RES-0001-332
OPS-SEA 100-U1
SEM-0154-003
SEM-0153-005
SEM-0109-001
CRY-0011-002

DESCRIPTION

RESISTOR 39K $1 / 4 \mathrm{~W}$
RESISTOR 24K 1/4W
TRIMMER, 5K
RESISTOR $1.5 \mathrm{~K} 1 / 4 \mathrm{~W}$
RESISTOR, 120K $1 / 4 \mathrm{~W}$
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
TRIMMER, IK
RESISTOR, 75 K 1/4W
RESISTOR 2.2K 1/4W
TRIMMER, 1 K
RESISTOR 2.2K 1/4W
RESISTOR 2.2K $1 / 4 \mathrm{~W}$
TRIMMER, 10K
TRIMMER, 10K
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR $2 K 1 / 4 W$
RESISTOR $4.71 / 4 \mathrm{~W}$
RESISTOR 10K $1 / 4 \mathrm{~W}$
RESISTOR 1OK $1 / 4 \mathrm{~W}$
RESISTOR $3.3 \mathrm{~K} \quad 1 / 4 \mathrm{~W}$
RESISTOR 3.3K $1 / 4 \mathrm{~W}$
RESISTOR 3.3K $1 / 4 \mathrm{~W}$
ALARM SOFTWARE
LM358 DUAL OP AMP
ULN-2283B LOW PWR AUD AMP
UA7805CKC 5V REGULATOR
COLORBURST $3.579545 \mathrm{HC} / 18 \mathrm{U}$

EFFECTIVE 07-14-93
REF DES
PART NLM
DESCRIPTION
13.6

C1
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C 2
C20
C21
C22
C3
C4
C5
C6
C8
C9
CR1
CR2
CR3
CR4
CR5

GND

JU1
MIC
PTT
Q1
Q2
Q3
R1
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R2
R20
R21
R22
R23

TER-0004-004
CAP-0006-001
CAP-0031-008
CAP-0027-103
CAP-0027-103
CAP-0027-103
CAP-0027-103
CAP-0006-001
CAP-0006-001
CAP-0031-001
CAP-0030-005
CAP-0006-003
CAP-0037-004
CAP-0037-004
CAP-0037-004
CAP-0013-002
CAP-0006-001
CAP-0006-001
CAP-0001-003
CAP-0027-103
CAP-0027-104
CAP-0027-472
CAP-0027-104
SEM-0076-001
SEM-0076-001
SEM-0170-027
SEM-0170-027
SEM-0170-027
TER-0004-004
JLM-0002-045
TER-0004-004
TER-0004-004
SEM-0004-002
SEM-0021-002
SEM-0021-002
RES-0001-331
RES-0001-332
RES-0001-332
RES-0001-332
RES-0001-104
RES-0001-473
RES-0001-273
RES-0001-123
RES-0001-682
RES-0001-153
RES-0001-103
RES-0001-102
RES-0001-102
RES-0001-472
RES-0001-104
RES-0001-473

REF DES	PART NLM	DESCRIPTION
R24	RES-0001-273	RESISTOR 27K 1/4W
R25	RES-0001-123	RESISTOR 12K 1/4W
R26	RES-0001-153	RESISTOR 15K 1/4W
R27	RES-0001-393	RESISTOR 39K 1/4W
R28	RES-0001-243	RESISTOR 24K 1/4W
R29	RES-0027-502	TRIMMER,5K
R3	RES-0001-152	RESISTOR 1.5K 1/4W
R30	RES-0001-124	RESISTOR, 120K $1 / 4 \mathrm{~W}$
R31	RES-0001-222	RESISTOR 2.2K 1/4W
R32	RES-0027-102	TRIMMER, 1 K
R33	RES-0001-753	RESISTOR, 75K 1/4W
R34	RES-0001-222	RESISTOR 2.2K 1/4W
R35	RES-0027-102	TRIMMER, 1K
R36	RES-0001-222	RESISTOR 2.2K 1/4W
R37	RES-0001-222	RESISTOR 2.2K 1/4W
R38	RES-0027-103	TRIMMER, 10K
R39	RES-0027-103	TRIMMER, 10K
R4	RES-0001-103	RESISTOR 10K 1/4W
R40	RES-0001-202	RESISTOR 2 K 1/4W
R4 1	RES-0001-047	RESISTOR $4.71 / 4 \mathrm{~W}$
R5	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R6	RES-0001-103	RESISTOR 10K $1 / 4 \mathrm{~W}$
R7	RES-0001-332	RESISTOR 3.3K 1/4W
R8	RES-0001-332	RESISTOR 3.3K 1/4W
R9	RES-0001-332	RESISTOR 3.3K 1/4W
SPKR	TER-0004-004	TERMINAL PIN
U1	OPS-SEA100-U1	ALARM SOFTWARE
U2	SEM-0154-003	LM358 DUAL OP AMP
U3	SEM-0153-005	ULN-2283B LOW PWR ALD AMP
U4	SEM-0109-001	UA7805CKC 5V REGULATOR
Y1	CRY-0011-002	COLOREURST $3.579545 \mathrm{HC/18U}$

LEVEL	PART	DESCRIPTION	QTY/ASSY
0.	ASY-0222-13	NECODE ADAPTER ASSY	
1.	ASY-0222-W6	COAX CABLE	1
1.	CAP-0013-003	CAPACITOR NONO . O1uf 100 V	1
1.......	CON-0001-005	JACK, PHONO 2 CON CLOSED	1
1.	OON-0001-008	PLUG, PHONO 2 CON	1
1.	CON-0028-001	PLUG-IN 9 TEPM FEMALE	1
	CON-0028-003	CONNECTOR, 9 PIN MALE STRAIGH	1
1.	PCB-0222-10	NECOOE ADAPTER BOARD	1
1.	RES-0001-103	RESISTOR 10K 1/4W	2
1.	SEM-0021-006	2N7000 MOSFET SWITCH (RED)	1
1......	SEM-0027-002	80V, 8 AMP P CHAN TMOSFET	1

[^0]:

