Dopo la descrizione del Racal PRM-4031, della PRC-515, voglio portare alla vostra attenzione un altro ricetrasmettitore portatile (“manpack”) di progettazione e costruzione ancora più recente: il CALLPAC PRC-2000 di co-produzione belga (PHILIPS) ed inglese (MEL)

Il Callpac, realizzato nella seconda metà degli anni 80 (il manuale tecnico riporta la data del 1986) e prodotto sino a tutti gli anni 90 è un ricetrasmettitore per onde corte (HF), portatile, finalizzato alla trasmissione in voce (SSB), telegrafia (CW) o dati con una copertura sino a 30km per onda di terra, ovviamente sostituendo all’antenna verticale un dipolo si ottiene una notevole estensione del raggio di copertura. Analogamente ad altri apparati della sua categoria è stato concepito al fine di consentire sia un impiego portatile che per essere utilizzato in sistemi veicolari o fissi ove è previsto l’uso di un finale di potenza rispettivamente di 100 e 400 W. A tale proposito vale la pena di fare una considerazione: gli apparati, come PRM-4031 e PRC-2000, per i quali è stato previsto un uso esteso (non solo portatile) risultano essere particolarmente curati nella loro sezione ricevente. Tornando al CALLPAC PRC-2000 le caratteristiche salienti sono rappresentate dal fatto che l’unità consente l’utilizzo a singolo o doppio operatore, l’uso
remoto e consente, inoltre, l’intercom tra i due operatori in condizioni di silenzio radio; il controllo a microprocessore della canalizzazione consente la memorizzazione della frequenza di rice trasmissione e del modo operativo per dieci canali, la cui selezione può avvenire anche con l’apparecchio spalleggia to mediante un’apposita cornetta (opzionale) dotata di selettore dei canali oltre che del controllo di volume e di standby. Quando l’apparecchio viene utilizzato in un ruolo statico l’operatore ha a disposizione, sul frontale del l’apparecchio, una tastiera a 20 pulsanti ed un display a cristalli liquidi ad otto cifre. L’antenna verticale viene avvita ta tramite un adattatore flessibile su un supporto ceramico presente sul pannello frontale ed il sistema a microprocessore prov vede ad un accordo di massima non appena viene selezionato il canale o la frequenza operativa, allorché poi viene premuto il PTT viene effettuata la sintonia fine, la cui efficacia può essere monitorata sul display che, opportunamente configurato, mostra in trasmissione la potenza selezionata (4 o 20 Watt) ed il segnale diretto e riflesso, mentre in ricezione indica la intensità del segnale ricevuto. Allorché venga selezionato un canale di sola ricezione oppure sia necessario mantenere una situazione di silenzio radio selezionando un canale di rice trasmissione la sintonia dell’antenna può essere effettuata manualmente con i comandi da tastiera. L’apparato prevede anche la possibilità di utilizzare anten-ne filari, in tal caso bisogna rimuovere un raccordo coassiale tra uscita di anten na ed accordatore automatico (raccordo presente sul pannello frontale sopra al supporto ceramico dell’antenna verticale) e connettere l’antenna filare direttamente all’uscita dello RTX, a differenza del PRM-4031 in questo caso non è possibile accordare l’antenna filare con l’ac cordatore dell’apparato ma, come indicato dal Manuale Tecnico, si deve sintonizzare l’antenna regolandone opportunamen te la lunghezza. L’alimentazione può essere esterna ed interna, tramite un pacco batterie al nickelcadmio (contenuto in un compartimento batterie non rimovibile fissato sulla parte posteriore del rice trasmettitore); la ricarica del pacco batterie può avvenire o mediante un apposito caricabatterie oppure in situazione campale remota tramite un genera-
tore a mano (20 minuti di carica per 10 minuti di trasmissione o 1 minuto di carica per 10 minuti di ricezione) o tramite un caricatore a pannelli solari, in que-st’ultimo caso in condizioni di ragionevole illuminazione solare il pannello fornisce una carica tale da consentire il contemporaneo utilizzo dell’apparato.

ANALISI DEL CIRCUITO
Il ricetrasmittitore CALLPAC PRC-2000 impiega il “terzo metodo” di generazione e demodulazione SSB (**figura 1**). Il segnale audio viene applicato a due modulatori bilanciati ciascuno dei quali è pilotato da un segnale a 1800Hz (in quadratura di fase).

Ricezione (figura 2**)
Un segnale in ingresso, tramite l’accordatore automatico, che fornisce una selezione.

Vita addizionale, e uno degli otto filtri passabanda giunge all’amplificatore RF, qui viene diviso in due segnali uguali tramite un “power splitter” (che in trasmissione agisce da combinatore), i segnali in uscita vengono applicati ad entrambi i mixer ove viene anche inserito il segnale dell’oscillatore locale, questi segnali hanno una frequenza corrispondente alla frequenza centrale del canale richiesto e sono in quadratura di fase, ottenuta dividendo per un fattore 4 la frequenza del sintetizzatore.

Logica conseguenza è che il sintetizzatore deve oscillare sino a una frequenza di 120 MHz e che, pertanto, perché il sistema funzioni sono necessarie logiche di divisione molto veloci. I segnali in uscita da ciascun mixer, che comprende sia la banda laterale desiderata che quella non voluta, giungono, tramite identici filtri passabasso, amplificatori e stadi di regolazione del guadagno, a due ulteriori mixer bilanciati ovvero vengono mescoltati con due segnali provenienti dal sintetizzatore ed in quadratura di fase a 1800 Hz, i segnali in uscita dai due mixer vengono...
trasferiti ad un combinatore (che in trasmissione agisce da splitter), nel quale la banda laterale non desiderata viene cancellata. Il segnale in uscita dal combinatore tramite un filtro passa basso convenzionale ed un amplificatore pilota le cuffie o l’altoparlante. In parallelo al filtro ed all’amplificatore di uscita è connesso un circuito amplificatore/rettificatore che genera la tensione di AGC con costanti di tempo di inserzione e di ritardo adeguate; questo segnale di AGC giunge allo stadio amplificatore RF ed agli attenuatori controllati in tensione di entrambi i canali a monte dei secondi mixers, ottenendo in tal modo un range di controllo di circa 90 dB.

Trasmissione (figura 3)
Per la trasmissione è necessario percorrere a ritroso i passi dello schema a blocchi relativo alla ricezione, mentre lo schema a blocchi del trasmettitore in realtà mostra la parte di speech-processor e di primo mixer del circuito trasmettente. Il segnale audio in ingresso viene filtrato e processato per stabilizzarne il li-
veduto in un circuito VOGAD. Il sistema opera come segue: il segnale audio viene dapprima filtrato in un filtro passabanda 300Hz 3.5kHz al fine di ridurre il rumore e quindi viene diviso in due componenti di identica ampiezza e frequenza ma in quadratura di fase. Questi due segnali vengono quindi traslati a due modulatori bilanciati ove vengono mescolati con due segnali a 250 kHz anch’essi in quadratura di fase, in particolare il segnale AF a 0° viene combinato con il segnale portante a 90° ed il segnale AF a 90° viene combinato con il segnale portante a 0°. I due segnali in uscita vengono quindi applicati a due modulatori bilanciati ciascuno dei quali riceve un tono audio (fo) a 1.8 kHz sfasato di 90° rispetto all’ingresso audio (f). I due modulatori sono bilanciati in modo da rimuovere sia il tono audio che l’ingresso audio e lasciare solo i segnali di banda laterale (fo-f e fo+f).

Questa combinazione di “primo metodo” e “terzo metodo” di generazione della SSB consente una addizionale reiezione della banda laterale non desiderata. Le due bande laterali vengono applicati ai canali 1 e 2 (CH1 e CH2) del trasmettitore, la banda laterale non desiderata viene eliminata a livello dei filtri passabasso ed il segnale viene quindi mescolato con la portante RF per generare il segnale SSB desiderato. Questo viene filtrato dallo stesso filtro passabanda usato nello stadio di ingresso della sezione ricevente prima di essere amplificato in un amplificatore lineare push-pull di potenza in classe AB sino a 20 W PEP. L’amplificatore di potenza incorpora un circuito di ALC ed una completa protezione contro misadattamenti di antenne, cortocircuiti di antenne ed assenza della stessa.

Considerazioni conclusive
Spero di avervi non troppo indegnamente presentato questo interessante ricevitrasmittitore portatile anche se, stante la sua particolare complessità, per una più profonda comprensione del suo funzionamento si deve rimandare al Manuale Tecnico. Certamente, nell’uso pratico, da confronto da me effettuati sul campo, la PRC-2000 ben figura a
confronto con apparati dello stesso periodo di progettazione come ad esempio la PRC-1099, la PRC-104, il BCC-39B.

Resto a disposizione dei Lettori che invito a visitare il mio spazio web, dove chi è interessato può trovare le foto dei miei apparati, www.dottorbaldi.it/militaryradio.

Mi siano consentite due note personali: cerco ricevitori modello RCA SRR-13 o SRR-13A e Magnavox (od altri) R-1051/URR in buone condizioni.

federico.baldi@elflash.it

BIBLIOGRAFIA
PHILIPS CALLPAC PRC/VRC 2000 TACTICAL HF RADIO-Manuale Tecnico e Manuale Operatore - maggio 1986

Federico BALDI è nato a Bari il 2 marzo del 1956, medico per necessità di sopravvivenza (è Specialista in Endocrinologia e Primario di Diabetologia all'Ospedale S.Andrea di Vercelli), sin da ragazzo è appassionato di apparecchiature radio; in particolare la passione è nata da quando suo zio gli faceva ascoltare i pescherecci su un Ducati AR 18 che aveva smontato da un veltivo ad Aviano subito dopo la II Guerra Mondiale. I suoi interessi predominanti sono i radiocircuiti militari ad alte prestazioni (ed in particolare i Collins) ed i ricestrasmittitori tattici spalleggiabili moderni.