Speech Processor Option

for Collins KWM-380

All Rights Reserved

1. Description	d. Route the cables from the speech		
	processor card through the slot on the side		
This speech processor is a new development	of the card cage to the front of the unit		
around a modern IC of high integration	between the power transformer and the		
degree. It increases the average talk power	card cage, then down the front panel		
with extremely little distortion. It is based on	behind the loudspeaker and loop back		
an audio dynamic compression principle with	across the receiver-exciter chassis under		
adjustable compression level background	the existing ribbon cables		
noise expansion and clipping of excessive	• Connect P17 of the ribbon cable assembly		
voice peaks	into 117 of the receiver exciter heard on		
voice peaks.	the bettern of the changing (4 using ribber)		
	the bottom of the chassis (4 wire ribbon).		
Due to it's low distortion level the processor	Attention: Make shure pin #1 wire from		
may remain activated even under strong	the speech processor board ends at J1/,		
signal conditions. The increase of average	pin #1 (Fig.3, detail A).		
talk power is in excess of 5 dB; peak power	f. Unplug the wire from the front panel		
output will remain constant due to AGC	potentiometer which plugs into J26		
action to prevent PA overload and output	(white) of the receiver-exciter board.		
signal distortion.	g. Plug P26 of the speech processor cable		
5	(input, orange) into J26 on the receiver-		
2. Installation	exciter board.		
	h Plug I26 of the speech processor cable		
Perform the following for installation in the	(output white) into P26 of the cable from		
KWM/HF_380.	the front nanel		
K W W/111 -300.	Disconnect the wire from the front nenel		
a Domove the KWM/HE 280 dust cover by	1. Disconnect the wife from the front panel		
a. Keniove the K w W//HF-380 dust cover by	potentionneter which plugs into 528 on the		
removing four screws from the bottom of	receiver exciter board (black).		
the transceiver.	J. Plug P28 of the speech processor cable		
b. remove the card cage cover to expose the	(input, black, "centre") into J28 on the		
plug-in circuit cards.	receiver-exciter board.		
c. Refer to figure 1. Insert the speech	k. Plug J28 of the speech processor cable		
processor PCB into the card guides.	(output, red) into first P28 "spare" con-		
	nector of processor input cable (black).		
Note	1. Plug P28 of the cable from the front panel		
Do not make any connections between the	potentiometer (black) into second "spare"		
PCB ground foil and the card cage ground!	connector of processor input cable		
Hum return loops will result.	(black).		
1			
Note	Note		
Refer to figures 1, 2, 3 and 4 while perfor-	Ensure that the speech processor card is fully		
ming steps d through l.	inserted into the card cage.		

Ulrich Graf, DK4SX November 1999

NT 4			
Note	f. Push PROC switch in.		
The speech processor is precisely aligned.	g. While speaking into the microphone at a		
With the SM-280 or any comparable dynamic	normal speech level, adjust P1 on the		
microphone connected to the microphone	speech processor card for a same S5 to S7		
jack of the transceiver, optimum performance	indication (microphone level adjustment).		
is obtained with all three trimm-	h. Adjust P2 to a 6 o'clock position (com-		
potentiometers in a 6 o'clock position.	pression factor $= 4$). This adjustment		
	leads to an increase of average talk power		
Note	by about 3 dB 6 dB. Further clockwise		
Take care not to overdrive the microphone	adjustment will increase dynamic com-		
amplifier. Adjust microphone gain w/o	pression. Maximum compression factor =		
speech processor to an S5. maximum S7	5. Fully ccw position results in a		
ALC reading.	minimum compression factor $= 2$.		
	1		
If adjustments to individual speech processor	Note		
settings are desired follow these steps:	Adjustments according to h and i are not		
	critical!		
3. Adjustments			
U U	i. P3 sets the maximum SP output signal		
a. Connect a dummy load to the rear panel	level and limiting level of voice peaks.		
RF connector.	Excessive SP signal output stresses ALC		
b. Connect a microphone to the MIC input	and may lead to a distorted audio signal.		
c. Set the transmitter frequency to	It does not increase peak RF output		
14.300.00 MHz	power. Exact distortion free adjustment		
d. On the front panel set MODE switch to	only possible with lab test setup. Therefor		
USB, PROC out, MOX in and METER	it is recommended to set P3 to a 6		
to ALC.	o'clock, maximum 4 o'clock position.		
e. Turn trimm-potentiometer P1, GAIN,			
right, fully ccw, P2, COMPRESSION,	j. Reinstall the card cage cover and dust		
middle, fully ccw and P3, ROTATION	cover.		
POINT (output level), left, to a 6 o'clock			
position.			

Parts List

PCB Part #	Description
C1	Capacitor, Foil, 1000 pF, 63 V
C2	Capacitor, Foil, .1 uF, 63 V
C3	Capacitor, Foil, .22 uF, 63 V
C4	Capacitor, Foil, .22 uF, 63 V
C5	Capacitor, Foil, .47 uF, 63 V
C6	Capacitor, Foil, .47 uF, 63 V
C7	Capacitor, Foil, .1 uF, 63 V
C8	Capacitor, Foil, .01 uF, 63 V
С9	Capacitor, Ceramic, .01 uF, 63 V
C10	Capacitor, Ceramic, 1000 pF, 63 V
C11	Capacitor, Ceramic, 470 pF, 63 V
C12	Capacitor, Ceramic, 470 pF, 63 V
C13	Capacitor, Foil, 1000 pF, 63 V
C14	Capacitor, Ceramic, 1000 pF, 63 V
C15	Capacitor, Ceramic, 1000 pF, 63 V
C16	Capacitor, Ceramic, 1000 pF, 63 V
C17	Capacitor, Foil, 2200 pF, 63 V
C18	Capacitor, Ceramic, .01 uF, 63 V
C19	Capacitor, Ceramic, .01 uF, 63 V
C20	Capacitor, Electrolytic, 100 uF, 25 V
C21	Capacitor, Electrolytic, 22 uF, 25 V
C22	Capacitor, Foil, 560 pF, 63 V
C23	Capacitor, Electrolytic, 10 uF, 25 V
C24	Capacitor, Electrolytic, 10 uF, 25 V
C25	Capacitor, Electrolytic, 10 uF, 25 V
D1	Diode, Silicon, 1N4004
D2	Diode, Silicon, 1N4148
IC1	Integrated Circuit, CMOS, MC4066
IC2	Integrated Circuit, Linear, Voltage Regulator, 78L05
IC3	Integrated Circuit, Linear, Microphone Processor, SSM2166
L1	Inductor, Molded, 100 uH
L2	Inductor, Molded, 100 uH
L3	Inductor, Molded, 100 uH
L4	Inductor, Molded, 100 uH
L5	Inductor, Molded, 100 uH
P1	Trimm Potentiometer, Film, ¼ W, 10 k
P2	Trimm Potentiometer, Film. ¹ / ₄ W. 100 k
P3	Trimm Potentiometer, Film, ¹ / ₄ W, 50 k
01	Transistor, NPN, 2N2222A
Q2	Transistor, PNP, 2N2907A
R1	Resistor, FXD, Film, ¼ W, 100 k
R2	Resistor, FXD, Film, ¼ W, 1 M
R3	Resistor, FXD, Film, ¼ W, 1 M

R4	Resistor EXD Film ¹ / W 10 k
N4 D5	Desister EXD Film, /4 W, 10 K
К5	Resistor, FAD, Film, ¼ W, 10 K
R6	Resistor, FXD, Film, ¼ W, 10 k
R7	Resistor, FXD, Film, ¼ W, 10 k
R8	Resistor, FXD, Film, ¼ W, 10 k
R9	Resistor, FXD, Film, ¼ W, 220 k
R10	Resistor, FXD, Film, ¼ W, 330 M
R11	Resistor, FXD, Film, ¼ W, 1 M
R12	Resistor, FXD, Film, ¼ W, 1 k
R13	Resistor, FXD, Film, ¼ W, 330 k
R14	Resistor, FXD, Film, ¼ W, 22 k, not installed
R15	Resistor, FXD, Film, ¼ W, 1 k
R16	Resistor, FXD, Film, ¼ W, 4.7 k
R17	Resistor, FXD, Film, ¼ W, 15 k
R18	Resistor, FXD, Film, ¼ W, 47 k
R19	Resistor, FXD, Film, ¼ W, 1 M
R20	Resistor, FXD, Film, ¼ W, 150 k
	P17/J01 Ribbon Supply Cable Assembly
	P26/28 Shielded Input Cable Assembly
	J26/28 Shielded Output Cable Assembly
	Printed Circuit Board

Technical Specifications:

Compression factor:	25,	adjustable,	(default value 4)		
Compression factor 4:	40 dB input signal dynamic range will be compressed to 10 dB				
	output signal dynamic range				
Input signal gain range:	40 dB				
Maximum undistorted output level:	600 mVPP,	(default val	ue 350 mVPP)		
Supply Voltage:	15 V				
Current consumption:	18 mA				

Additional notes:

Original circuitry of the microphone amplifier in the KWM-380 is of very high impedance. This clearly documents it's origin in tubes circuitry but proves to be inconvenient in a modern solid state RF apparatus design because it is extremely sensitive to RF interference. Any additional cable length inserted into the microphone path may be cause of such interference and without appropriate measures for prevention the speech processor (SP) may not work, independent of being the Collins original or this new version.

The original way of contacting the SP relates the processor input ground to the microphone amplifier ground, leaving the SP output ground connected to the gain potentiometer but open, i. e. without connection to the receiver/exciter board ground. In all cases I tested, this connection sheme proved to be more sensitive to either interference or hum excitation. I therefor created another connection version with common ground for microphone amplifier, SP input and output. Confectioning of cables allows both versions of interconnection, so you may try to confirm my findings by yourself. My drawings present the new connection sheme. To provide a quick comparison with the originally proposed interconnections I used the same cable colours as the Collins SP.

Since shielding braids of the two interconnection cables are both connected to ground at the input and output you might suggest to use a single shielded cable with two wires. I tested this version as well but diameter of such a cable is considerably larger and you have to use a very large ferrite core as an RF choke, too. To realize minimum $6 \dots 8$ turns on the core the overall diameter will be more than 1". The presented version with two cables is more complicated to manufacture but more convenient to install. Furthermore, shielding factor of high quality PTFE coax cable is by far better than of dual wire audio line.

July 1999, Ulrich Graf, DK4SX